MATH 5105 Differential and Integral Analysis : Solution Sheet 10

1. Calculate the following (improper) integrals
(a) $\int_{0}^{1} \log x d x$,

Proof. As $\log (x)$ has a singularity at 0 , this is an improper integral. Computing

$$
\begin{aligned}
\int_{0}^{1} \log (x) d x & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} \log x d x \\
& =\lim _{\varepsilon \rightarrow 0}[x \log x]_{\varepsilon}^{1}-\int_{\varepsilon}^{1} \frac{x}{x} d x \\
& =0-\lim _{\varepsilon \rightarrow 0}(\varepsilon \log \varepsilon-[1-\varepsilon]) \\
& =-1
\end{aligned}
$$

where we evaluate $\lim _{x \rightarrow 0} x \log x=0$ using L'Hôpital's rule.
(b) $\int_{2}^{\infty} \frac{\log x}{x} d x$,

Proof.

$$
\begin{aligned}
\int_{2}^{\infty} \frac{\log x}{x} d x & =\lim _{a \rightarrow \infty} \int_{2}^{a}\left(\frac{d}{d x} \log x\right) \log x d x \\
& =\lim _{a \rightarrow \infty}\left[(\log x)^{2}\right]_{2}^{a}-\lim _{a \rightarrow \infty} \int_{2}^{a} \frac{\log x}{x} d x
\end{aligned}
$$

Hence we get that

$$
2 \int_{2}^{\infty} \frac{\log x}{x} d x=\lim _{a \rightarrow \infty}\left[(\log x)^{2}\right]_{2}^{a}=\infty .
$$

(c) $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$.

Proof. Let $x=\tan \theta, d x=\sec ^{2} \theta d \theta=\left(1+\tan ^{2} \theta\right) d \theta=\left(1+x^{2}\right) d \theta$. Furthermore as $x \rightarrow \infty$ it follows that $\theta \rightarrow \frac{\pi}{2}$ so that

$$
\begin{aligned}
\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{1}{1+x^{2}} d x & =\lim _{\theta_{0} \rightarrow \pi / 2} \int_{0}^{\theta_{0}} \frac{1+x^{2}}{1+x^{2}} d \theta \\
& =\lim _{\theta_{0} \rightarrow \pi / 2} \theta_{0}=\frac{\pi}{2}
\end{aligned}
$$

2. Find the radius of convergence and the exact intervals of convergence for the following power series
(a) $\sum n^{2} x^{n}$,

Proof. Let us consider $a_{n}=n^{2}$ so that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}}\right|=1=\beta
$$

Hence $R=\frac{1}{\beta}$ and the radius of convergence ins 1. If $x= \pm 1$ the the series $\sum n^{2}(-1)^{n}, \sum n^{2}(1)^{n}$ are divergent by the n-th term test.
(b) $\sum \frac{2^{n}}{n!} x^{n}$,

Proof. Let $a_{n}=\frac{2^{n}}{n!}$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} /(n+1)!}{2^{n} / n!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} n!}{2^{n}(n+1)!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2}{n+1}\right|=0 .
\end{aligned}
$$

$\therefore \beta=0 \& R=\frac{1}{\beta}=\infty \Longrightarrow$ the interval of convergence is \mathbb{R}.
(c) $\sum \frac{3^{n}}{n 4^{n}} x^{n}$,

Proof.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{(n+1) 4^{n+1}} \frac{n 4^{n}}{3^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{3}{4} \frac{n}{n+1}\right| \\
&=\frac{3}{4}=\beta .
\end{aligned}
$$

Therefore the radius of convergence is $R=\frac{1}{\beta}=\frac{4}{3}$. If $x=\frac{4}{3}$ then we have

$$
\sum \frac{3^{n}}{n 4^{n}} \frac{4^{n}}{3^{n}}=\sum \frac{1}{n}
$$

which diverges by the p harmonic test $(p=1)$. If $x=-\frac{4}{3}$ then

$$
\sum(-1)^{n} \frac{3^{n}}{n 4^{n}} \frac{4^{n}}{3^{n}}=\sum \frac{(-1)^{n}}{n}
$$

which converges by the Leibniz test. Therefore the interval of convergence is $\left[-\frac{4}{3}, \frac{4}{3}\right)$.
(d) $\sum \frac{3^{n}}{\sqrt{n}} x^{2 n+1}$

Proof. Note that we can not use the ratio test as $a_{2 n}=0$ but $a_{2 n+1}=\frac{3^{n}}{\sqrt{n}}$. Instead we treat the sum as an ordinary series and apply the ratio test to consecutive terms

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} / \sqrt{n+1} \times x^{2 n+3}}{3^{n} / \sqrt{n} \times x^{2 n+1}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{3 \sqrt{n}}{\sqrt{n+1}} x^{2}\right| \\
& =3 x^{2}<1
\end{aligned}
$$

if $|x|<\frac{1}{\sqrt{3}}$. Testing the end points, as $x=\frac{1}{\sqrt{3}}$ we get

$$
\sum \frac{3^{n}}{\sqrt{n}} 3^{-n-1 / 2}=\sum \frac{1}{\sqrt{3 n}}
$$

which diverges by the p harmonic test (with $p=\frac{1}{2}$). As $x=-\frac{1}{\sqrt{3}}$ we get

$$
\sum \frac{3^{n}}{\sqrt{n}} \frac{(-1)^{2 n+1}}{\sqrt{3} 3^{n}}=-\sum \frac{1}{\sqrt{3 n}}
$$

which again diverges by the p-harmonic test. Hence the interval of convergence is

$$
\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

3. For all $n \in \mathbb{N}$, let $f_{n}(x)=\frac{1}{n} \sin n x$. Each f_{n} is differentiable. Show that
(a) $\lim _{n \rightarrow \infty} f_{n}(x)=0$,

Proof. Note that $|\sin n x| \leq 1$ for all n, x hence

$$
\left|f_{n}(x)\right|=\left|\frac{1}{n} \sin (n x)\right| \leq \frac{1}{n}
$$

which gives us

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

as $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
(b) Show that $\lim _{n \rightarrow \infty} f_{n}^{\prime}$ may not exist.

Proof. Computing we get

$$
f_{n}^{\prime}(x)=\frac{n}{n} \cos (n x)=\cos (n x) .
$$

Therefore if we let $x=\pi$ then

$$
f_{n}^{\prime}(\pi)=\cos (n \pi)=(-1)^{n}
$$

which is divergent. Hence $\lim _{n \rightarrow \infty \rightarrow \infty} f_{n}(x)$ many not exist.
4. Let $f_{n}(x)=n x^{n}, \quad x \in[0,1], n \in \mathbb{N}$
(a) Show that $\lim _{n \rightarrow \infty} f_{n}(x)=0, \quad x \in[0,1)$,

Proof. If $0<x<1$ then we see that $x=1 / r^{n}$ where $r>1$

$$
f_{n}(x)=n x^{n}
$$

and we can apply say L'Hôpital's rule to conclude that $\lim _{n \rightarrow \infty} f_{n}(x)=0$.
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=1$.

Proof. Note that the function $f(x)$ is not defined at $x=1$ but considering it as an improper integral

$$
\int_{0}^{1} f(x) d x=\lim _{\varepsilon \rightarrow 1} \int_{0}^{\varepsilon} f(x) d x=0 .
$$

On the other hand

$$
\begin{aligned}
\int_{0}^{1} f_{n}(x) d x & =\int_{0}^{1} n x^{n} d x \\
& =\left[\frac{n}{n+1} x^{n+1}\right]_{0}^{1} \\
& =\frac{n}{n+1}
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=1 \neq \int_{0}^{1} f(x) d x
$$

5. By considering $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1$, derive the formula

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}, \quad|x|<1
$$

Proof. Recall that

$$
\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

Differentiating with respect to x, we get

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}
$$

Then multiplying by x we get

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

Furthermore

(a) evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$,

Proof. If we set $x=\frac{1}{2}($ here $|x|<1)$ we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n}{2^{n}} & =\frac{1 / 2}{(1-1 / 2)^{2}} \\
& =\frac{1 / 2}{1 / 4}=2
\end{aligned}
$$

(b) evaluate $\sum_{n=1}^{\infty} \frac{n}{3^{n}}, \sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}$.

Proof. If $x=\frac{1}{3}, x=-\frac{1}{3},(|x|<1)$ so that we have

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n}}=\frac{1 / 3}{(1-1 / 3)^{2}}=\frac{1 / 3}{4 / 9}=\frac{3}{4}
$$

and

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{3^{n}}=\frac{-1 / 3}{(1+1 / 3)^{2}}=-\frac{3}{16} .
$$

6. (a) Derive an explicit formula for

$$
\sum_{n=1}^{\infty} n^{2} x^{n}
$$

Proof. Recall that

$$
\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

Differentiating with respect to x, we get

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}
$$

Then multiplying by x we get

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

Again differentiating with respect to x

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{2} x^{n-1} & =\frac{1}{(1-x)^{2}}-\frac{-2 x}{(1-x)^{3}} \\
& =\frac{1-x+2 x}{(1-x)^{3}}=\frac{1+x}{(1-x)^{3}}
\end{aligned}
$$

Therefore we have

$$
\sum_{n=1}^{\infty} n^{2} x^{n}=\frac{x(1+x)}{(1-x)^{3}}
$$

(b) Evaluate $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}, \sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$.

Proof. If $x=\frac{1}{2}$, then

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=\frac{1 / 2 \times 3 / 2}{(1-1 / 2)^{3}}=\frac{3 \times 8}{4}=6 .
$$

Similarly if $x=\frac{1}{3}$ then

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}=\frac{1 / 3 \times 4 / 3}{(1-1 / 3)^{3}}=\frac{4 / 9}{(2 / 3)^{3}}=\frac{3}{2} .
$$

7. Let $f(x)=|x|, x \in \mathbb{R}$. Is there a power series $\sum a_{n} x^{n}$ such that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$? Explain your answer.

Proof. No. Because if such a power series existed then f would be smooth but f is not differentiable at $x=0$.
8. Is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sum_{k=1}^{\infty} \sin ^{2}\left(\frac{x}{k}\right)$ differentiable?

Proof. If $\sum f_{k}$ converges (uniformly) and $\sum f_{k}^{\prime}$ converges uniformly then $f=\sum f_{k}$ is differentiable and $f^{\prime}=\sum f_{k}^{\prime}$.
Therefore let $f_{k}(x)=\sin ^{2}\left(\frac{x}{k}\right)$. Then $f_{k}^{\prime}(x)=\frac{2}{k} \sin \left(\frac{x}{k}\right) \cos \left(\frac{x}{k}\right)$. As $|\sin t| \leq|t|$ for all $t \in \mathbb{R}$, we have

$$
\sum_{k=1}^{\infty}\left|\sin ^{2}\left(\frac{x}{k}\right)\right| \leq|x|^{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}} .
$$

Since $\sum \frac{1}{k^{2}}$ converges, the sum $\sum_{k=1}^{\infty} f_{k}$ converges for fixed x. This implies that $\sum_{k=1}^{\infty} f_{k}$ converges pointwise. Also as $|\cos t| \leq 1$ for all $t \in \mathbb{R}$, we have

$$
\left|2 \sin \left(\frac{x}{k}\right) \cos \left(\frac{x}{k}\right)\right| \leq 2|x| \frac{1}{k^{2}} \quad \forall k \in \mathbb{N} .
$$

If we restrict x to $[-A, A]$ for some $A>0$ then for all $k \in \mathbb{N}$,

$$
\left|2 \sin \left(\frac{x}{k}\right) \cos \left(\frac{x}{k}\right)\right| \leq 2|x| \frac{1}{k^{2}} \leq 2 A \frac{1}{k^{2}} .
$$

Since $\sum_{k=1}^{\infty} \frac{2 A}{k^{2}}=2 A \sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges, the Weierstraß M-test implies that $\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$ converges uniformly on $[-A, A]$.
9. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions on $[a, b]$ and suppose that $f_{n} \rightarrow f$ uniformly on $[a, b]$. Prove that f is integrable and that

$$
\int_{a}^{b} f d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}
$$

10. Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be a sequence of continuous functions that converge uniformly to $f(x)=0$. Show that if

$$
0 \leq f_{n}(x) \leq e^{-x}
$$

for all $x \geq 0$ and for all $n \in \mathbb{N}$ then

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=0
$$

Proof. As f_{n} converges uniformly to 0 , we have that

$$
\lim _{n \rightarrow \infty} \int_{0}^{M} f_{n}(x) d x=0
$$

for any fixed $M>0$. To deal with the improper integral, we split the integral $\int_{0}^{\infty} f_{n}(x) d x$ into two pieces by writing

$$
\int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{M} f_{n}(x) d x+\int_{M}^{\infty} f_{n}(x) d x
$$

As we are dealing with improper integrals, we need to be precise with the limits involved, so we write for $A>M$

$$
\int_{0}^{A} f_{n}(x) d x=\int_{0}^{M} f_{n}(x) d x+\int_{M}^{A} f_{n}(x) d x
$$

We have therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x & =\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty}\left(\int_{0}^{M} f_{n}(x) d x+\int_{M}^{A} f_{n}(x) d x\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{M} f_{n}(x) d x+\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x \\
& =\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x
\end{aligned}
$$

Now by assumption $0 \leq f_{n}(x) \leq e^{-x}$ and therefore

$$
0 \leq \int_{M}^{A} f_{n}(x) d x \leq \int_{M}^{A} e^{-x} d x \leq e^{-M}
$$

thus

$$
0 \leq \lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x \leq e^{-M}
$$

This holds for any choice of $M>0$, so we obtain the upper bound $\inf _{M>0} e^{-M}=$ 0.

