MATH 5105 Differential and Integral Analysis : Solution Sheet $10\,$

- 1. Calculate the following (improper) integrals
 - (a) $\int_0^1 \log x dx$,

Proof. As $\log(x)$ has a singularity at 0, this is an improper integral. Computing

$$\int_0^1 \log(x) dx = \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 \log x dx$$
$$= \lim_{\varepsilon \to 0} \left[x \log x \right]_{\varepsilon}^1 - \int_{\varepsilon}^1 \frac{x}{x} dx$$
$$= 0 - \lim_{\varepsilon \to 0} (\varepsilon \log \varepsilon - [1 - \varepsilon])$$
$$= -1$$

where we evaluate $\lim_{x\to 0} x \log x = 0$ using L'Hôpital's rule.

(b) $\int_2^\infty \frac{\log x}{x} dx$,

Proof.

$$\int_{2}^{\infty} \frac{\log x}{x} dx = \lim_{a \to \infty} \int_{2}^{a} \left(\frac{d}{dx} \log x\right) \log x dx$$
$$= \lim_{a \to \infty} \left[(\log x)^{2} \right]_{2}^{a} - \lim_{a \to \infty} \int_{2}^{a} \frac{\log x}{x} dx$$

Hence we get that

$$2\int_{2}^{\infty} \frac{\log x}{x} dx = \lim_{a \to \infty} \left[(\log x)^{2} \right]_{2}^{a} = \infty.$$

(c) $\int_0^\infty \frac{1}{1+x^2} dx$.

Proof. Let $x = \tan \theta$, $dx = \sec^2 \theta d\theta = (1 + \tan^2 \theta) d\theta = (1 + x^2) d\theta$. Furthermore as $x \to \infty$ it follows that $\theta \to \frac{\pi}{2}$ so that

$$\lim_{a \to \infty} \int_0^a \frac{1}{1+x^2} dx = \lim_{\theta_0 \to \pi/2} \int_0^{\theta_0} \frac{1+x^2}{1+x^2} d\theta$$
$$= \lim_{\theta_0 \to \pi/2} \theta_0 = \frac{\pi}{2}.$$

- 2. Find the radius of convergence and the exact intervals of convergence for the following power series
 - (a) $\sum n^2 x^n$,

Proof. Let us consider $a_n = n^2$ so that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{n^2} \right| = 1 = \beta.$$

Hence $R = \frac{1}{\beta}$ and the radius of convergence ins 1. If $x = \pm 1$ the the series $\sum n^2(-1)^n$, $\sum n^2(1)^n$ are divergent by the *n*-th term test.

(b) $\sum \frac{2^n}{n!} x^n$,

Proof. Let $a_n = \frac{2^n}{n!}$ then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}/(n+1)!}{2^n/n!} \right|$$
$$= \lim_{n \to \infty} \left| \frac{2^{n+1}n!}{2^n(n+1)!} \right|$$
$$= \lim_{n \to \infty} \left| \frac{2}{n+1} \right| = 0.$$

 $\therefore \beta = 0 \& R = \frac{1}{\beta} = \infty \implies \text{the interval of convergence is } \mathbb{R}.$

(c) $\sum \frac{3^n}{n4^n} x^n$,

Proof.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1}}{(n+1)4^{n+1}} \frac{n4^n}{3^n} \right|$$
$$= \lim_{n \to \infty} \left| \frac{3}{4} \frac{n}{n+1} \right|$$
$$= \frac{3}{4} = \beta.$$

Therefore the radius of convergence is $R = \frac{1}{\beta} = \frac{4}{3}$. If $x = \frac{4}{3}$ then we have

$$\sum \frac{3^n}{n4^n} \frac{4^n}{3^n} = \sum \frac{1}{n}$$

which diverges by the p harmonic test (p = 1). If $x = -\frac{4}{3}$ then

$$\sum (-1)^n \frac{3^n}{n4^n} \frac{4^n}{3^n} = \sum \frac{(-1)^n}{n}$$

which converges by the Leibniz test. Therefore the interval of convergence is $\left[-\frac{4}{3},\frac{4}{3}\right]$.

(d) $\sum \frac{3^n}{\sqrt{n}} x^{2n+1}$

Proof. Note that we can not use the ratio test as $a_{2n} = 0$ but $a_{2n+1} = \frac{3^n}{\sqrt{n}}$. Instead we treat the sum as an ordinary series and apply the ratio test to consecutive terms

$$\lim_{n \to \infty} \left| \frac{3^{n+1}/\sqrt{n+1} \times x^{2n+3}}{3^n/\sqrt{n} \times x^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{3\sqrt{n}}{\sqrt{n+1}} x^2 \right|$$
$$= 3x^2 < 1$$

if $|x| < \frac{1}{\sqrt{3}}$. Testing the end points, as $x = \frac{1}{\sqrt{3}}$ we get

$$\sum \frac{3^n}{\sqrt{n}} 3^{-n-1/2} = \sum \frac{1}{\sqrt{3n}}$$

which diverges by the p harmonic test (with $p = \frac{1}{2}$). As $x = -\frac{1}{\sqrt{3}}$ we get

$$\sum \frac{3^n}{\sqrt{n}} \frac{(-1)^{2n+1}}{\sqrt{3}3^n} = -\sum \frac{1}{\sqrt{3n}}$$

which again diverges by the p-harmonic test. Hence the interval of convergence is

$$\left(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right).$$

3. For all $n \in \mathbb{N}$, let $f_n(x) = \frac{1}{n} \sin nx$. Each f_n is differentiable. Show that

(a)
$$\lim_{n \to \infty} f_n(x) = 0$$

Proof. Note that $|\sin nx| \leq 1$ for all n, x hence

$$|f_n(x)| = \left|\frac{1}{n}\sin(nx)\right| \le \frac{1}{n}$$

which gives us

$$\lim_{n \to \infty} f_n(x) = 0$$

as $\lim_{n \to \infty} \frac{1}{n} = 0.$

(b) Show that $\lim_{n\to\infty} f'_n$ may not exist.

Proof. Computing we get

$$f'_n(x) = \frac{n}{n}\cos(nx) = \cos(nx).$$

Therefore if we let $x = \pi$ then

$$f'_n(\pi) = \cos(n\pi) = (-1)^n$$

which is divergent. Hence $\lim_{n\to\infty\to\infty}f_n(x)$ many not exist.

- 4. Let $f_n(x) = nx^n$, $x \in [0, 1], n \in \mathbb{N}$
 - (a) Show that $\lim_{n\to\infty} f_n(x) = 0$, $x \in [0,1)$,

Proof. If 0 < x < 1 then we see that $x = 1/r^n$ where r > 1

$$f_n(x) = nx^n$$

and we can apply say L'Hôpital's rule to conclude that $\lim_{n\to\infty} f_n(x) = 0$. \Box

(b) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 1.$

Proof. Note that the function f(x) is not defined at x = 1 but considering it as an improper integral

$$\int_0^1 f(x)dx = \lim_{\varepsilon \to 1} \int_0^\varepsilon f(x)dx = 0.$$

On the other hand

$$\int_0^1 f_n(x)dx = \int_0^1 nx^n dx$$
$$= \left[\frac{n}{n+1}x^{n+1}\right]_0^1$$
$$= \frac{n}{n+1}$$

Therefore

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 1 \neq \int_0^1 f(x) dx.$$

5. By considering $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, |x| < 1, derive the formula

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}, \quad |x| < 1$$

Proof. Recall that

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1.$$

Differentiating with respect to x, we get

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}.$$

Then multiplying by x we get

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

		L
		L
_	_	

Furthermore

(a) evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$, *Proof.* If we set $x = \frac{1}{2}$ (here |x| < 1) we get

 $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1/2}{(1-1/2)^2}$ $= \frac{1/2}{1/4} = 2.$

г			٦	
L				
L	_	_		

(b) evaluate
$$\sum_{n=1}^{\infty} \frac{n}{3^n}, \sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n}$$
.

_	_	_	
		1	
		1	
		1	

Proof. If $x = \frac{1}{3}, x = -\frac{1}{3}, (|x| < 1)$ so that we have

$$\sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{1/3}{(1-1/3)^2} = \frac{1/3}{4/9} = \frac{3}{4}$$

and

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n} = \frac{-1/3}{(1+1/3)^2} = -\frac{3}{16}.$$

6. (a) Derive an explicit formula for

$$\sum_{n=1}^{\infty} n^2 x^n$$

Proof. Recall that

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1.$$

Differentiating with respect to x, we get

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}.$$

Then multiplying by x we get

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

Again differentiating with respect to \boldsymbol{x}

$$\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{1}{(1-x)^2} - \frac{-2x}{(1-x)^3}$$
$$= \frac{1-x+2x}{(1-x)^3} = \frac{1+x}{(1-x)^3}.$$

Therefore we have

$$\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}.$$

		J

(b) Evaluate $\sum_{n=1}^{\infty} \frac{n^2}{2^n}, \sum_{n=1}^{\infty} \frac{n^2}{3^n}.$

Proof. If $x = \frac{1}{2}$, then

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} = \frac{1/2 \times 3/2}{(1-1/2)^3} = \frac{3 \times 8}{4} = 6.$$

Similarly if $x = \frac{1}{3}$ then

$$\sum_{n=1}^{\infty} \frac{n^2}{3^n} = \frac{1/3 \times 4/3}{(1-1/3)^3} = \frac{4/9}{(2/3)^3} = \frac{3}{2}.$$

7. Let $f(x) = |x|, x \in \mathbb{R}$. Is there a power series $\sum a_n x^n$ such that $f(x) = \sum_{n=0}^{\infty} a_n x^n$? Explain your answer.

Proof. No. Because if such a power series existed then f would be smooth but f is not differentiable at x = 0.

8. Is the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sum_{k=1}^{\infty} \sin^2\left(\frac{x}{k}\right)$ differentiable?

Proof. If $\sum f_k$ converges (uniformly) and $\sum f'_k$ converges uniformly then $f = \sum f_k$ is differentiable and $f' = \sum f'_k$.

Therefore let $f_k(x) = \sin^2\left(\frac{x}{k}\right)$. Then $f'_k(x) = \frac{2}{k}\sin\left(\frac{x}{k}\right)\cos\left(\frac{x}{k}\right)$. As $|\sin t| \le |t|$ for all $t \in \mathbb{R}$, we have

$$\sum_{k=1}^{\infty} \left| \sin^2 \left(\frac{x}{k} \right) \right| \le |x|^2 \sum_{k=1}^{\infty} \frac{1}{k^2}.$$

Since $\sum \frac{1}{k^2}$ converges, the sum $\sum_{k=1}^{\infty} f_k$ converges for fixed x. This implies that $\sum_{k=1}^{\infty} f_k$ converges pointwise. Also as $|\cos t| \le 1$ for all $t \in \mathbb{R}$, we have

$$\left|2\sin\left(\frac{x}{k}\right)\cos\left(\frac{x}{k}\right)\right| \le 2|x|\frac{1}{k^2} \quad \forall k \in \mathbb{N}.$$

If we restrict x to [-A, A] for some A > 0 then for all $k \in \mathbb{N}$,

$$\left|2\sin\left(\frac{x}{k}\right)\cos\left(\frac{x}{k}\right)\right| \le 2|x|\frac{1}{k^2} \le 2A\frac{1}{k^2}.$$

Since $\sum_{k=1}^{\infty} \frac{2A}{k^2} = 2A \sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, the Weierstraß*M*-test implies that $\sum_{k=1}^{\infty} f'_k(x)$ converges uniformly on [-A, A].

9. Let $\{f_n\}$ be a sequence of integrable functions on [a, b] and suppose that $f_n \to f$ uniformly on [a, b]. Prove that f is integrable and that

$$\int_{a}^{b} f dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

10. Let $f_n: [0, \infty) \to \mathbb{R}$ be a sequence of continuous functions that converge uniformly to f(x) = 0. Show that if

$$0 \le f_n(x) \le e^{-x}$$

for all $x \ge 0$ and for all $n \in \mathbb{N}$ then

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = 0.$$

Proof. As f_n converges uniformly to 0, we have that

$$\lim_{n \to \infty} \int_0^M f_n(x) dx = 0$$

for any fixed M > 0. To deal with the improper integral, we split the integral $\int_0^\infty f_n(x) dx$ into two pieces by writing

$$\int_0^\infty f_n(x)dx = \int_0^M f_n(x)dx + \int_M^\infty f_n(x)dx.$$

As we are dealing with improper integrals, we need to be precise with the limits involved, so we write for A > M

$$\int_0^A f_n(x)dx = \int_0^M f_n(x)dx + \int_M^A f_n(x)dx.$$

We have therefore

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = \lim_{n \to \infty} \lim_{A \to \infty} \left(\int_0^M f_n(x) dx + \int_M^A f_n(x) dx \right)$$
$$= \lim_{n \to \infty} \int_0^M f_n(x) dx + \lim_{n \to \infty} \lim_{A \to \infty} \int_M^A f_n(x) dx$$
$$= \lim_{n \to \infty} \lim_{A \to \infty} \int_M^A f_n(x) dx.$$

Now by assumption $0 \le f_n(x) \le e^{-x}$ and therefore

$$0 \le \int_M^A f_n(x) dx \le \int_M^A e^{-x} dx \le e^{-M}.$$

thus

$$0 \le \lim_{n \to \infty} \lim_{A \to \infty} \int_M^A f_n(x) dx \le e^{-M}.$$

This holds for any choice of M > 0, so we obtain the upper bound $\inf_{M>0} e^{-M} = 0$.