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1. Calculate the following (improper) integrals

(a)
∫ 1
0 log xdx,

Proof. As log(x) has a singularity at 0, this is an improper integral. Com-
puting ∫ 1

0
log(x)dx = lim

ε→0

∫ 1

ε
log xdx

= lim
ε→0

[
x log x

]1
ε

−
∫ 1

ε

x

x
dx

= 0− lim
ε→0

(ε log ε− [1− ε])

= −1

where we evaluate limx→0 x log x = 0 using L’Hôpital’s rule.

(b)
∫∞
2

log x
x dx,

Proof. ∫ ∞
2

log x

x
dx = lim

a→∞

∫ a

2

(
d

dx
log x

)
log xdx

= lim
a→∞

[
(log x)2

]a
2

− lim
a→∞

∫ a

2

log x

x
dx

Hence we get that

2

∫ ∞
2

log x

x
dx = lim

a→∞

[
(log x)2

]a
2

=∞.

(c)
∫∞
0

1
1+x2

dx.
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Proof. Let x = tan θ, dx = sec2 θdθ = (1 + tan2 θ)dθ = (1 + x2)dθ. Further-
more as x→∞ it follows that θ → π

2 so that

lim
a→∞

∫ a

0

1

1 + x2
dx = lim

θ0→π/2

∫ θ0

0

1 + x2

1 + x2
dθ

= lim
θ0→π/2

θ0 =
π

2
.

2. Find the radius of convergence and the exact intervals of convergence for the fol-
lowing power series

(a)
∑
n2xn,

Proof. Let us consider an = n2 so that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2

n2

∣∣∣∣ = 1 = β.

Hence R = 1
β and the radius of convergence ins 1. If x = ±1 the the series∑

n2(−1)n,
∑
n2(1)n are divergent by the n-th term test.

(b)
∑ 2n

n! x
n,

Proof. Let an = 2n

n! then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1/(n+ 1)!

2n/n!

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2n+1n!

2n(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2

n+ 1

∣∣∣∣ = 0.

∴ β = 0&R = 1
β =∞ =⇒ the interval of convergence is R.

(c)
∑ 3n

n4nx
n,

Proof.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n+1

(n+ 1)4n+1

n4n

3n

∣∣∣∣
= lim

n→∞

∣∣∣∣34 n

n+ 1

∣∣∣∣
=

3

4
= β.
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Therefore the radius of convergence is R = 1
β = 4

3 . If x = 4
3 then we have

∑ 3n

n4n
4n

3n
=
∑ 1

n

which diverges by the p harmonic test (p = 1). If x = −4
3 then

∑
(−1)n

3n

n4n
4n

3n
=
∑ (−1)n

n

which converges by the Leibniz test. Therefore the interval of convergence is[
−4

3 ,
4
3

)
.

(d)
∑ 3n√

n
x2n+1

Proof. Note that we can not use the ratio test as a2n = 0 but a2n+1 = 3n√
n

.

Instead we treat the sum as an ordinary series and apply the ratio test to
consecutive terms

lim
n→∞

∣∣∣∣3n+1/
√
n+ 1× x2n+3

3n/
√
n× x2n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3
√
n√

n+ 1
x2
∣∣∣∣

= 3x2 < 1

if |x| < 1√
3
. Testing the end points, as x = 1√

3
we get

∑ 3n√
n

3−n−1/2 =
∑ 1√

3n

which diverges by the p harmonic test (with p = 1
2). As x = − 1√

3
we get

∑ 3n√
n

(−1)2n+1

√
33n

= −
∑ 1√

3n

which again diverges by the p-harmonic test. Hence the interval of conver-
gence is (

− 1√
3
,

1√
3

)
.

3. For all n ∈ N, let fn(x) = 1
n sinnx . Each fn is differentiable. Show that

(a) limn→∞ fn(x) = 0,
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Proof. Note that | sinnx| ≤ 1 for all n, x hence

|fn(x)| =
∣∣∣∣ 1n sin(nx)

∣∣∣∣ ≤ 1

n

which gives us

lim
n→∞

fn(x) = 0

as limn→∞
1
n = 0.

(b) Show that limn→∞ f
′
n may not exist.

Proof. Computing we get

f ′n(x) =
n

n
cos(nx) = cos(nx).

Therefore if we let x = π then

f ′n(π) = cos(nπ) = (−1)n

which is divergent. Hence limn→∞→∞ fn(x) many not exist.

4. Let fn(x) = nxn, x ∈ [0, 1], n ∈ N

(a) Show that limn→∞ fn(x) = 0, x ∈ [0, 1),

Proof. If 0 < x < 1 then we see that x = 1/rn where r > 1

fn(x) = nxn

and we can apply say L’Hôpital’s rule to conclude that limn→∞ fn(x) = 0.

(b) limn→∞
∫ 1
0 fn(x)dx = 1.

Proof. Note that the function f(x) is not defined at x = 1 but considering it
as an improper integral∫ 1

0
f(x)dx = lim

ε→1

∫ ε

0
f(x)dx = 0.

On the other hand ∫ 1

0
fn(x)dx =

∫ 1

0
nxndx

=

[
n

n+ 1
xn+1

]1
0

=
n

n+ 1
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Therefore

lim
n→∞

∫ 1

0
fn(x)dx = 1 6=

∫ 1

0
f(x)dx.

5. By considering
∑∞

n=0 x
n = 1

1−x , |x| < 1, derive the formula

∞∑
n=1

nxn =
x

(1− x)2
, |x| < 1

Proof. Recall that

∞∑
n=1

xn =
1

1− x
, |x| < 1.

Differentiating with respect to x, we get

∞∑
n=1

nxn−1 =
1

(1− x)2
.

Then multiplying by x we get

∞∑
n=1

nxn =
x

(1− x)2
.

Furthermore

(a) evaluate
∑∞

n=1
n
2n ,

Proof. If we set x = 1
2 ( here |x| < 1) we get

∞∑
n=1

n

2n
=

1/2

(1− 1/2)2

=
1/2

1/4
= 2.

(b) evaluate
∑∞

n=1
n
3n ,
∑∞

n=1
(−1)nn

3n .
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Proof. If x = 1
3 , x = −1

3 , (|x| < 1) so that we have

∞∑
n=1

n

3n
=

1/3

(1− 1/3)2
=

1/3

4/9
=

3

4

and

∞∑
n=1

(−1)n
n

3n
=

−1/3

(1 + 1/3)2
= − 3

16
.

6. (a) Derive an explicit formula for

∞∑
n=1

n2xn

Proof. Recall that

∞∑
n=1

xn =
1

1− x
, |x| < 1.

Differentiating with respect to x, we get

∞∑
n=1

nxn−1 =
1

(1− x)2
.

Then multiplying by x we get

∞∑
n=1

nxn =
x

(1− x)2
.

Again differentiating with respect to x

∞∑
n=1

n2xn−1 =
1

(1− x)2
− −2x

(1− x)3

=
1− x+ 2x

(1− x)3
=

1 + x

(1− x)3
.

Therefore we have

∞∑
n=1

n2xn =
x(1 + x)

(1− x)3
.
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(b) Evaluate
∑∞

n=1
n2

2n ,
∑∞

n=1
n2

3n .

Proof. If x = 1
2 , then

∞∑
n=1

n2

2n
=

1/2× 3/2

(1− 1/2)3
=

3× 8

4
= 6.

Similarly if x = 1
3 then

∞∑
n=1

n2

3n
=

1/3× 4/3

(1− 1/3)3
=

4/9

(2/3)3
=

3

2
.

7. Let f(x) = |x|, x ∈ R. Is there a power series
∑
anx

n such that f(x) =
∑∞

n=0 anx
n?

Explain your answer.

Proof. No. Because if such a power series existed then f would be smooth but f
is not differentiable at x = 0.

8. Is the function f : R→ R given by f(x) =
∑∞

k=1 sin2
(
x
k

)
differentiable?

Proof. If
∑
fk converges (uniformly) and

∑
f ′k converges uniformly then f =

∑
fk

is differentiable and f ′ =
∑
f ′k.

Therefore let fk(x) = sin2
(
x
k

)
. Then f ′k(x) = 2

k sin
(
x
k

)
cos
(
x
k

)
. As | sin t| ≤ |t| for

all t ∈ R, we have

∞∑
k=1

∣∣∣sin2
(x
k

)∣∣∣ ≤ |x|2 ∞∑
k=1

1

k2
.

Since
∑ 1

k2
converges, the sum

∑∞
k=1 fk converges for fixed x. This implies that∑∞

k=1 fk converges pointwise. Also as | cos t| ≤ 1 for all t ∈ R, we have∣∣∣2 sin
(x
k

)
cos
(x
k

)∣∣∣ ≤ 2|x| 1

k2
∀k ∈ N.

If we restrict x to [−A,A] for some A > 0 then for all k ∈ N,∣∣∣2 sin
(x
k

)
cos
(x
k

)∣∣∣ ≤ 2|x| 1

k2
≤ 2A

1

k2
.

Since
∑∞

k=1
2A
k2

= 2A
∑∞

k=1
1
k2

converges, the WeierstraßM -test implies that
∑∞

k=1 f
′
k(x)

converges uniformly on [−A,A].
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9. Let {fn} be a sequence of integrable functions on [a, b] and suppose that fn → f
uniformly on [a, b]. Prove that f is integrable and that∫ b

a
fdx = lim

n→∞

∫ b

a
fn.

10. Let fn : [0,∞)→ R be a sequence of continuous functions that converge uniformly
to f(x) = 0. Show that if

0 ≤ fn(x) ≤ e−x

for all x ≥ 0 and for all n ∈ N then

lim
n→∞

∫ ∞
0

fn(x)dx = 0.

Proof. As fn converges uniformly to 0, we have that

lim
n→∞

∫ M

0
fn(x)dx = 0

for any fixed M > 0. To deal with the improper integral, we split the integral∫∞
0 fn(x)dx into two pieces by writing∫ ∞

0
fn(x)dx =

∫ M

0
fn(x)dx+

∫ ∞
M

fn(x)dx.

As we are dealing with improper integrals, we need to be precise with the limits
involved, so we write for A > M∫ A

0
fn(x)dx =

∫ M

0
fn(x)dx+

∫ A

M
fn(x)dx.

We have therefore

lim
n→∞

∫ ∞
0

fn(x)dx = lim
n→∞

lim
A→∞

(∫ M

0
fn(x)dx+

∫ A

M
fn(x)dx

)
= lim

n→∞

∫ M

0
fn(x)dx+ lim

n→∞
lim
A→∞

∫ A

M
fn(x)dx

= lim
n→∞

lim
A→∞

∫ A

M
fn(x)dx.

Now by assumption 0 ≤ fn(x) ≤ e−x and therefore

0 ≤
∫ A

M
fn(x)dx ≤

∫ A

M
e−xdx ≤ e−M .
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thus

0 ≤ lim
n→∞

lim
A→∞

∫ A

M
fn(x)dx ≤ e−M .

This holds for any choice of M > 0, so we obtain the upper bound infM>0 e
−M =

0.
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