MATH 5105 Differential and Integral Analysis Assignment 5 Solutions

1. Let $f_{n}(x)=\frac{1+\cos ^{2023}(n x)}{\sqrt{n}}$. Does $\left\{f_{n}\right\}$ converge uniformly to a function f on \mathbb{R} ?

Proof. Note that for a fixed x we see that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ pointwise. It remains to prove that the convergence is uniform. Hence consider

$$
\begin{aligned}
\left|f_{n}(x)-0\right|=\left|f_{n}(x)\right| & =\left|\frac{1+\cos ^{2023}(n x)}{\sqrt{n}}\right| \\
& \leq\left|\frac{2}{\sqrt{n}}\right|
\end{aligned}
$$

and $\frac{2}{\sqrt{n}}<\varepsilon$ if $\frac{2}{\varepsilon}<\sqrt{n}$ or equivalently $n>\frac{4}{\varepsilon^{2}}$. Therefore we choose

$$
N(\varepsilon)=\left\lceil\frac{4}{\varepsilon^{2}}\right\rceil \text {. }
$$

2. (a) Show for all $x \in \mathbb{R}$, the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$ converges uniformly.

Proof. As $|\cos t| \leq 1$ for all $t \in \mathbb{R}$, we have

$$
\sum_{n=1}^{\infty}\left|\frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

As $\sum \frac{1}{n^{2}}$ converges, the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$ converges (absolutely) for fixed x as absolute convergence implies convergence.
(b) Show for all $x \in \mathbb{R}$, the sum $\sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$ converges uniformly.

Proof. As $|\sin t| \leq 1$ for all $t \in \mathbb{R}$, we have

$$
\left|\frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)\right| \leq \frac{1}{n^{3}}
$$

for all $n \in \mathbb{N}$. Hence $\sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$ converges uniformly by the Weierstraß M-test.
3. Does the pointwise limit function of the $\sum_{n=1}^{\infty} \frac{1}{n} \cos \left(\frac{x}{n}\right)$ exist as a function f : $\mathbb{R} \rightarrow \mathbb{R}$, i.e. for all $x \in \mathbb{R}$? If the function f exists, decide whether or not the convergence is uniform.

Proof. We note that substituting $x=0$ in $\sum_{n=1}^{\infty} \frac{1}{n} \cos \left(\frac{x}{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n}$ which is a divergent series and therefore the pointwise limit function f is not defined at $x=0$. Therefore, all other issues of convergence, and uniform convergence cannot be considered.
4. Find a relationship between $\frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$ and $\frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$ and use this to show $f: \mathbb{R} \rightarrow$ \mathbb{R} defined by

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)
$$

is differentiable.

Proof. Let $f_{n}=\frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$. Then $f_{n}^{\prime}(x)=-\frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$. As $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise and as $g(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ converges uniformly we can integrate term by term to get

$$
\int_{0}^{x}-g(t) d t=\sum_{n=1}^{\infty} \int_{0}^{x}-\frac{1}{n^{3}} \sin \left(\frac{t}{n}\right) d t=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)=f(x)
$$

As g is continuous, the fundamental theorem of calculus shows is that f is differentiable and that

$$
f^{\prime}(x)=-g(x)=-\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)
$$

