MTH5105 Differential and Integral Analysis 2012-2013

Solutions 9

1 Exercises

1) (a) Show that for all $x \in \mathbb{R}$, the sum $\sum_{k=1}^{\infty} \frac{1}{k} \sin \left(\frac{x}{k}\right)$ converges. [You may use that $|\sin (t)| \leq|t|$ for all $t \in \mathbb{R}$.]
(b) Show that the sum $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cos \left(\frac{x}{k}\right)$ converges uniformly for all $x \in \mathbb{R}$.
(c) Deduce that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{k} \sin \left(\frac{x}{k}\right)
$$

is differentiable.
Solution:
(a) As $|\sin t| \leq|t|$ for all $t \in \mathbb{R}$, we have

$$
\sum_{k=1}^{\infty}\left|\frac{1}{k} \sin \left(\frac{x}{k}\right)\right| \leq|x| \sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

$\sum \frac{1}{k^{2}}$ converges, so that the sum $\sum_{k=1}^{\infty} \frac{1}{k} \sin \left(\frac{x}{k}\right)$ converges absolutely (for fixed x). (Recall absolute convergence implies convergence.)
(b) As $|\cos t| \leq 1$ for all $t \in \mathbb{R}$, we have

$$
\left|\frac{1}{k^{2}} \cos \left(\frac{x}{k}\right)\right| \leq \frac{1}{k^{2}}
$$

for all $k \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges the sum $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cos \left(\frac{x}{k}\right)$ converges uniformly by the Weierstraß M-test.
(c) Let $f_{k}(x)=\frac{1}{k} \sin \left(\frac{x}{k}\right)$. Then $f_{k}^{\prime}(x)=\frac{1}{k^{2}} \cos \left(\frac{x}{k}\right)$.

As $\sum f_{k}$ converges pointwise and $\sum f_{k}^{\prime}$ converges uniformly, $f=\sum f_{k}$ is differentiable and $f^{\prime}=\sum f_{k}^{\prime}$. (This is by Theorem 9.8(b) in the notes.)
2) Is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\sum_{k=1}^{\infty} \sin ^{2}(x / k)
$$

differentiable?

Solution:

If $\sum f_{k}$ converges pointwise and $\sum f_{k}^{\prime}$ converges uniformly, then $f=\sum f_{k}$ is differentiable and $f^{\prime}=\sum f_{k}^{\prime}$.
Let $f_{k}(x)=\sin ^{2}(x / k)$. Then $f_{k}^{\prime}(x)=2 \sin (x / k) \cos (x / k) / k$.
As $|\sin t| \leq|t|$ for all $t \in \mathbb{R}$, we have

$$
\sum_{k=1}^{\infty}\left|\sin ^{2}(x / k)\right| \leq x^{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}} .
$$

 $\sum_{k=1}^{\infty} f_{k}$ converges pointwise
[We could have proven uniform convergence on bounded intervals, but we don't need to.]
As also $|\cos t| \leq 1$ for all $t \in \mathbb{R}$, we have

$$
|2 \sin (x / k) \cos (x / k) / k| \leq|x| \frac{1}{k^{2}}
$$

for any $k \in \mathbb{N}$.
If we restrict x to $[-A, A]$ for some $A>0$, then, for all $k \in \mathbb{N}$,

$$
|2 \sin (x / k) \cos (x / k) / k| \leq|x| \frac{1}{k^{2}} \leq A \frac{1}{k^{2}}
$$

Since $\sum_{k=1}^{\infty} A \frac{1}{k^{2}}=A \sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges, the Weierstraß M-test implies that $\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$ converges uniformly on $[-A, A]$.
Thus we can conclude that $f=\sum f_{k}$ is differentiable with $f^{\prime}=\sum f_{k}^{\prime}$ on any interval $[-A, A]$, and hence on \mathbb{R}.
3) Let $f_{n}:[0,1] \mapsto \mathbb{R}$ be a sequence of differentiable functions, and let $f:[0,1] \mapsto \mathbb{R}$. Consider the statements
(a) $f_{n} \rightarrow f$ pointwise,
(b) $f_{n} \rightarrow f$ uniformly,
(c) f_{n}^{\prime} converges pointwise,
(d) $f_{n}^{\prime} \rightarrow f^{\prime}$ pointwise,
(e) f continuous,
(f) f differentiable,
(a) b
(9)
(c)
(g) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$,
and cleary indicate in the enclosed figure all implications by the appropriate arrows (" \Longrightarrow ").
Solution:
The only valid implications are:
(b) implies (a),(e),(g)
(d) implies (c)
(f) implies (e)
*4) Let $f_{n}:[0, \infty) \mapsto \mathbb{R}$ be a sequence of continuous functions that converge uniformly to $f(x)=0$. Show that if

$$
0 \leq f_{n}(x) \leq e^{-x}
$$

for all $x \geq 0$ and for all $n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=0
$$

[Recall from Calculus I the definition of the improper integral $\int_{0}^{\infty} f(x) d x=\lim _{A \rightarrow \infty} \int_{0}^{A} f(x) d x$.] Solution:
As f_{n} converges uniformly to zero, we have that

$$
\lim _{n \rightarrow \infty} \int_{0}^{M} f_{n}(x) d x=0
$$

for any fixed $M>0$.
To deal with the improper integral, we split the integral $\int_{0}^{\infty} f_{n}(x) d x$ into two pieces by writing

$$
\int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{M} f_{n}(x) d x+\int_{M}^{\infty} f_{n}(x) d x
$$

As we are dealing with improper integrals, we need to be precise with the limits involved, so we write for $A>M$

$$
\int_{0}^{A} f_{n}(x) d x=\int_{0}^{M} f_{n}(x) d x+\int_{M}^{A} f_{n}(x) d x
$$

and take the appropriate limit of $A \rightarrow \infty$.
We have therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x & =\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty}\left(\int_{0}^{M} f_{n}(x) d x+\int_{M}^{A} f_{n}(x) d x\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{M} f_{n}(x) d x+\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x \\
& =\lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x
\end{aligned}
$$

Now by assumption $0 \leq f_{n}(x) \leq e^{-x}$, and therefore

$$
0 \leq \int_{M}^{A} f_{n}(x) d x \leq \int_{M}^{A} e^{-x} d x<e^{-M}
$$

Thus

$$
0 \leq \lim _{n \rightarrow \infty} \lim _{A \rightarrow \infty} \int_{M}^{A} f_{n}(x) d x \leq e^{-M}
$$

This holds for any chosen $M>0$, whence the upper bound is $\inf _{M>0}\left(e^{-M}\right)=0$.

