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1 Exercises

1) (a) Show that for all x ∈ R, the sum
∑∞

k=1
1
k sin

(
x
k

)
converges.

[You may use that | sin(t)| ≤ |t| for all t ∈ R.]

(b) Show that the sum
∑∞

k=1
1
k2 cos

(
x
k

)
converges uniformly for all x ∈ R.

(c) Deduce that f : R→ R defined by

f(x) =
∞∑

k=1

1
k

sin
(x

k

)
is differentiable.

Solution:

(a) As | sin t| ≤ |t| for all t ∈ R, we have

∞∑
k=1

∣∣∣∣1k sin
(x

k

)∣∣∣∣ ≤ |x| ∞∑
k=1

1
k2

∑
1
k2 converges, so that the sum

∑∞
k=1

1
k sin

(
x
k

)
converges absolutely (for fixed x).

(Recall absolute convergence implies convergence.)

(b) As | cos t| ≤ 1 for all t ∈ R, we have∣∣∣∣ 1
k2

cos
(x

k

)∣∣∣∣ ≤ 1
k2

.

for all k ∈ N. Since
∑∞

k=1
1
k2 converges the sum

∑∞
k=1

1
k2 cos

(
x
k

)
converges uniformly

by the Weierstraß M-test.

(c) Let fk(x) = 1
k sin

(
x
k

)
. Then f ′k(x) = 1

k2 cos
(

x
k

)
.

As
∑

fk converges pointwise and
∑

f ′k converges uniformly, f =
∑

fk is differentiable
and f ′ =

∑
f ′k. (This is by Theorem 9.8(b) in the notes.)

2) Is the function f : R→ R given by

f(x) =
∞∑

k=1

sin2(x/k)

differentiable?



Solution:

If
∑

fk converges pointwise and
∑

f ′k converges uniformly, then f =
∑

fk is differentiable
and f ′ =

∑
f ′k.

Let fk(x) = sin2(x/k). Then f ′k(x) = 2 sin(x/k) cos(x/k)/k.

As | sin t| ≤ |t| for all t ∈ R, we have

∞∑
k=1

| sin2(x/k)| ≤ x2
∞∑

k=1

1
k2

.

∑
1
k2 converges, so that the sum

∑∞
k=1 fk converges absolutely (for fixed x). This implies∑∞

k=1 fk converges pointwise

[We could have proven uniform convergence on bounded intervals, but we don’t need to.]

As also | cos t| ≤ 1 for all t ∈ R, we have

|2 sin(x/k) cos(x/k)/k| ≤ |x| 1
k2

for any k ∈ N.

If we restrict x to [−A, A] for some A > 0, then, for all k ∈ N,

|2 sin(x/k) cos(x/k)/k| ≤ |x| 1
k2
≤ A

1
k2

.

Since
∑∞

k=1 A 1
k2 = A

∑∞
k=1

1
k2 converges, the Weierstraß M-test implies that

∑∞
k=1 f ′k(x)

converges uniformly on [−A, A].

Thus we can conclude that f =
∑

fk is differentiable with f ′ =
∑

f ′k on any interval [−A, A],
and hence on R.

3) Let fn : [0, 1] 7→ R be a sequence of differentiable functions, and let f : [0, 1] 7→ R. Consider
the statements

(a) fn → f pointwise,

(b) fn → f uniformly,

(c) f ′n converges pointwise,

(d) f ′n → f ′ pointwise,

(e) f continuous,

(f) f differentiable,

(g) limn→∞
∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx ,

and cleary indicate in the enclosed figure all implications by the appropriate arrows (“=⇒”).

Solution:

The only valid implications are:

(b) implies (a),(e),(g)

(d) implies (c)

(f) implies (e)
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*4) Let fn : [0,∞) 7→ R be a sequence of continuous functions that converge uniformly to
f(x) = 0. Show that if

0 ≤ fn(x) ≤ e−x

for all x ≥ 0 and for all n ∈ N, then

lim
n→∞

∫ ∞
0

fn(x) dx = 0 .

[Recall from Calculus I the definition of the improper integral
∫∞
0

f(x) dx = limA→∞
∫ A

0
f(x) dx.]

Solution:

As fn converges uniformly to zero, we have that

lim
n→∞

∫ M

0

fn(x) dx = 0

for any fixed M > 0.

To deal with the improper integral, we split the integral
∫∞
0

fn(x) dx into two pieces by
writing ∫ ∞

0

fn(x) dx =
∫ M

0

fn(x) dx +
∫ ∞

M

fn(x) dx .

As we are dealing with improper integrals, we need to be precise with the limits involved, so
we write for A > M ∫ A

0

fn(x) dx =
∫ M

0

fn(x) dx +
∫ A

M

fn(x) dx ,

and take the appropriate limit of A→∞.

We have therefore

lim
n→∞

∫ ∞
0

fn(x) dx = lim
n→∞

lim
A→∞

(∫ M

0

fn(x) dx +
∫ A

M

fn(x) dx

)

= lim
n→∞

∫ M

0

fn(x) dx + lim
n→∞

lim
A→∞

∫ A

M

fn(x) dx

= lim
n→∞

lim
A→∞

∫ A

M

fn(x) dx .

Now by assumption 0 ≤ fn(x) ≤ e−x, and therefore

0 ≤
∫ A

M

fn(x) dx ≤
∫ A

M

e−x dx < e−M .

Thus

0 ≤ lim
n→∞

lim
A→∞

∫ A

M

fn(x) dx ≤ e−M .

This holds for any chosen M > 0, whence the upper bound is infM>0(e−M ) = 0.
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