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1 Exercise for Feedback

1) Let the sequence of functions gn : R→ R (n ∈ N) be given by

gn(x) =
x

1 + nx2
.

(a) Compute g(x) = lim
n→∞

gn(x).

(b) Show that gn converges to g uniformly.

(c) Compute h(x) = lim
n→∞

g′n(x).

(d) Does g′(x) = h(x) hold?

(e) Why does Theorem 9.5 not apply here?

Solution:

(a) We have gn(0) = 0, and for x 6= 0 we estimate

|gn(x)| = |x|
1 + nx2

≤ |x|
nx2

=
1
n|x|

.

The right-hand side converges to zero as n→∞, hence

g(x) = lim
n→∞

gn(x) = 0 .

(b) Here we have to work a bit harder (we could have done so immediately in part (a)):
From

g′n(x) =
1− nx2

(1 + nx2)2

we can determine the extrema of gn by solving g′n(x) = 0. We find x = ±1/
√
n. As

lim
x→±∞

gn(x) = 0, we can conclude that

|gn(x)| ≤ gn(1/
√
n) =

1
2
√
n
.

The right-hand side converges to zero as n→∞ independently of x, hence the conver-
gence is uniform.
An alternative argument goes as follows: For ε > 0 we have

|gn(x)| < ε for |x| ≤ ε,

and
|gn(x)| ≤ 1

nε
for |x| > ε.

Now, given ε > 0 choose n0 = d1/ε2e. Then if n > n0 it follows that |gn(x)| < ε for all
x ∈ R, i.e. gn converges uniformly to zero.



(c) From

g′n(x) =
1− nx2

(1 + nx2)2

it follows that

|g′n(x)| = |1− nx2|
(1 + nx2)2

≤ 1 + nx2

(1 + nx2)2
=

1
1 + nx2

.

For x 6= 0, this implies that lim
n→∞

gn(x) = 0. If x = 0 then g′n(x) = 1, so that

h(x) =

{
0 x 6= 0 ,
1 x = 0 .

(d) No: g′(0) = 0 but h(0) = 1.
(e) For Theorem 9.5 to apply, g′n must converge to h uniformly, which is not the case here.

(This can be seen from the fact that if the convergence were uniform then h would be
continuous, which it is not.)

2 Extra Exercises

2) For x ∈ R, compute

f(x) =
∞∑

n=1

x

(1 + x2)n
.

Show that the convergence is not uniform.

Solution:

We have a geometric series with terms of the form aqn where a = x and q = 1/(1 + x2). For
|q| < 1 the sum is therefore aq/(1− q).
|q| < 1 is equivalent to x 6= 0, in which case we find

f(x) =
x

(1 + x2)
(

1− 1
1+x2

) =
1
x
.

For x = 0, f(x) =
∑∞

n=1 0 = 0. Thus,

f(x) =

{
0 x = 0 ,
1/x x 6= 0 .

The convergence cannot be uniform, as the limiting function is discontinuous.

[Alternatively, to directly show lack of uniform convergence you would need to consider the
partial sums

fN (x) =
N∑

n=1

x

(1 + x2)n
=

1
x
− 1
x(1 + x2)N

.

Clearly something goes wrong with uniform convergence near zero. For instance, if you check
what happens for x = 1/N you will find that f(1/N)− fN (1/N) actually diverges as N →∞
(in fact, fN (1/N)→ 1).]

3) (a) Show that the following sequences of functions converge uniformly on the given intervals.

(i) un(x) = (1− x)xn , [0, 1] ;

(ii) vn(x) =
x2

1 + nx2
, R .
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(b) Which of the following sequences of functions converge uniformly to s(x) = 1 on the
interval [0, 1]?

(i) fn(x) = (1 + x/n)2 ,
(ii) gn(x) = 1 + xn(1− x)n ,

(iii) hn(x) = 1− xn(1− xn) .

Solution:

(a) On [0, 1], un(x) = (1 − x)xn is non-negative and maximal at x = n/(1 + n) (compute
u′n to find this value), so that

0 ≤ un(x) ≤ un(n/(1 + n)) =
1
n

(
1− 1

n+ 1

)n+1

<
1
n
.

Therefore |un(x)| < e/n which tends to zero independent of x.
On R, vn(x) = x2/(1 + nx2) is non-negative and bounded above by 1/n, as

0 ≤ vn(x) =
1
n
− 1
n(1 + nx2)

<
1
n
.

Therefore |vn(x)| < 1/n which tends to zero independent of x.

(b) On [0, 1], 0 ≤ fn(x)−s(x) = x2/n2 +2x/n ≤ 3/n. Therefore |fn(x)−s(x)| < 3/n which
tends to zero independent of x.
Hence fn converges uniformly to s.
On [0, 1], 0 ≤ gn(x) − s(x) = (x(1 − x))n. This is maximal at x = 1/2, and therefore
|gn(x)− s(x)| ≤ 1/4n which tends to zero independent of x.
Hence gn converges uniformly to s.
On [0, 1], 0 ≤ s(x)− hn(x) = xn(1− xn). However, this is maximal at xn = 2−1/n, and
therefore s(xn)− hn(xn) = 1/4 which does not tend to zero as n becomes large.
Hence hn does not converge uniformly to s.

*4) Let fn : R→ R be a sequence of continuous functions converging uniformly to a function f .
Show that if limn→∞ xn = x then

lim
n→∞

fn(xn) = f(x) .

Solution:

We need to show that for all ε > 0 there exists an n0 such that |fn(xn) − f(x)| < ε for all
n ≥ n0.

The key step is to use the triangle inequality

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| .

fn converges uniformly to f , so for given ε1 > 0 there is an n1 such that

|fn(x)− f(x)| < ε1

for all n ≥ n1 independently of the value of x, so in particular

|fn(xn)− f(xn)| < ε1

for all n ≥ n1.
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As f is a uniform limit of continuous functions fn, f is continuous. Therefore, for given
ε2 > 0 there is an n2 such that

|f(xn)− f(x)| < ε2

for all n ≥ n2.

Now, for given ε choose ε1 = ε2 = ε/2. Then for n0 = max(n1, n2) we find that

|fn(xn)− f(x)| ≤ ε/2 + ε/2 = ε .
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