MTH5105 Differential and Integral Analysis 2011-2012

Solutions 8

1 Exercise for Feedback

1) Let the sequence of functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}(n \in \mathbb{N})$ be given by

$$
g_{n}(x)=\frac{x}{1+n x^{2}} .
$$

(a) Compute $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)$.
(b) Show that g_{n} converges to g uniformly.
(c) Compute $h(x)=\lim _{n \rightarrow \infty} g_{n}^{\prime}(x)$.
(d) Does $g^{\prime}(x)=h(x)$ hold?
(e) Why does Theorem 9.5 not apply here?

Solution:

(a) We have $g_{n}(0)=0$, and for $x \neq 0$ we estimate

$$
\left|g_{n}(x)\right|=\frac{|x|}{1+n x^{2}} \leq \frac{|x|}{n x^{2}}=\frac{1}{n|x|}
$$

The right-hand side converges to zero as $n \rightarrow \infty$, hence

$$
g(x)=\lim _{n \rightarrow \infty} g_{n}(x)=0
$$

(b) Here we have to work a bit harder (we could have done so immediately in part (a)): From

$$
g_{n}^{\prime}(x)=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}
$$

we can determine the extrema of g_{n} by solving $g_{n}^{\prime}(x)=0$. We find $x= \pm 1 / \sqrt{n}$. As $\lim _{x \rightarrow \pm \infty} g_{n}(x)=0$, we can conclude that

$$
\left|g_{n}(x)\right| \leq g_{n}(1 / \sqrt{n})=\frac{1}{2 \sqrt{n}}
$$

The right-hand side converges to zero as $n \rightarrow \infty$ independently of x, hence the convergence is uniform.
An alternative argument goes as follows: For $\varepsilon>0$ we have

$$
\left|g_{n}(x)\right|<\varepsilon \quad \text { for }|x| \leq \varepsilon
$$

and

$$
\left|g_{n}(x)\right| \leq \frac{1}{n \varepsilon} \quad \text { for }|x|>\varepsilon
$$

Now, given $\varepsilon>0$ choose $n_{0}=\left\lceil 1 / \varepsilon^{2}\right\rceil$. Then if $n>n_{0}$ it follows that $\left|g_{n}(x)\right|<\varepsilon$ for all $x \in \mathbb{R}$, i.e. g_{n} converges uniformly to zero.
(c) From

$$
g_{n}^{\prime}(x)=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}
$$

it follows that

$$
\left|g_{n}^{\prime}(x)\right|=\frac{\left|1-n x^{2}\right|}{\left(1+n x^{2}\right)^{2}} \leq \frac{1+n x^{2}}{\left(1+n x^{2}\right)^{2}}=\frac{1}{1+n x^{2}}
$$

For $x \neq 0$, this implies that $\lim _{n \rightarrow \infty} g_{n}(x)=0$. If $x=0$ then $g_{n}^{\prime}(x)=1$, so that

$$
h(x)= \begin{cases}0 & x \neq 0 \\ 1 & x=0\end{cases}
$$

(d) No: $g^{\prime}(0)=0$ but $h(0)=1$.
(e) For Theorem 9.5 to apply, g_{n}^{\prime} must converge to h uniformly, which is not the case here. (This can be seen from the fact that if the convergence were uniform then h would be continuous, which it is not.)

2 Extra Exercises

2) For $x \in \mathbb{R}$, compute

$$
f(x)=\sum_{n=1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{n}}
$$

Show that the convergence is not uniform.

Solution:

We have a geometric series with terms of the form $a q^{n}$ where $a=x$ and $q=1 /\left(1+x^{2}\right)$. For $|q|<1$ the sum is therefore $a q /(1-q)$.
$|q|<1$ is equivalent to $x \neq 0$, in which case we find

$$
f(x)=\frac{x}{\left(1+x^{2}\right)\left(1-\frac{1}{1+x^{2}}\right)}=\frac{1}{x}
$$

For $x=0, f(x)=\sum_{n=1}^{\infty} 0=0$. Thus,

$$
f(x)= \begin{cases}0 & x=0 \\ 1 / x & x \neq 0\end{cases}
$$

The convergence cannot be uniform, as the limiting function is discontinuous.
[Alternatively, to directly show lack of uniform convergence you would need to consider the partial sums

$$
f_{N}(x)=\sum_{n=1}^{N} \frac{x}{\left(1+x^{2}\right)^{n}}=\frac{1}{x}-\frac{1}{x\left(1+x^{2}\right)^{N}}
$$

Clearly something goes wrong with uniform convergence near zero. For instance, if you check what happens for $x=1 / N$ you will find that $f(1 / N)-f_{N}(1 / N)$ actually diverges as $N \rightarrow \infty$ (in fact, $\left.\left.f_{N}(1 / N) \rightarrow 1\right).\right]$
3) (a) Show that the following sequences of functions converge uniformly on the given intervals.
(i) $u_{n}(x)=(1-x) x^{n}$,
$[0,1]$;
(ii) $v_{n}(x)=\frac{x^{2}}{1+n x^{2}}$,
\mathbb{R}.
(b) Which of the following sequences of functions converge uniformly to $s(x)=1$ on the interval $[0,1]$?
(i) $f_{n}(x)=(1+x / n)^{2}$,
(ii) $g_{n}(x)=1+x^{n}(1-x)^{n}$,
(iii) $\quad h_{n}(x)=1-x^{n}\left(1-x^{n}\right)$.

Solution:

(a) On $[0,1], u_{n}(x)=(1-x) x^{n}$ is non-negative and maximal at $x=n /(1+n)$ (compute u_{n}^{\prime} to find this value), so that

$$
0 \leq u_{n}(x) \leq u_{n}(n /(1+n))=\frac{1}{n}\left(1-\frac{1}{n+1}\right)^{n+1}<\frac{1}{n}
$$

Therefore $\left|u_{n}(x)\right|<e / n$ which tends to zero independent of x.
On $\mathbb{R}, v_{n}(x)=x^{2} /\left(1+n x^{2}\right)$ is non-negative and bounded above by $1 / n$, as

$$
0 \leq v_{n}(x)=\frac{1}{n}-\frac{1}{n\left(1+n x^{2}\right)}<\frac{1}{n}
$$

Therefore $\left|v_{n}(x)\right|<1 / n$ which tends to zero independent of x.
(b) On $[0,1], 0 \leq f_{n}(x)-s(x)=x^{2} / n^{2}+2 x / n \leq 3 / n$. Therefore $\left|f_{n}(x)-s(x)\right|<3 / n$ which tends to zero independent of x.
Hence f_{n} converges uniformly to s.
On $[0,1], 0 \leq g_{n}(x)-s(x)=(x(1-x))^{n}$. This is maximal at $x=1 / 2$, and therefore $\left|g_{n}(x)-s(x)\right| \leq 1 / 4^{n}$ which tends to zero independent of x.
Hence g_{n} converges uniformly to s.
On $[0,1], 0 \leq s(x)-h_{n}(x)=x^{n}\left(1-x^{n}\right)$. However, this is maximal at $x_{n}=2^{-1 / n}$, and therefore $s\left(x_{n}\right)-h_{n}\left(x_{n}\right)=1 / 4$ which does not tend to zero as n becomes large.
Hence h_{n} does not converge uniformly to s.
$\left.{ }^{*} 4\right)$ Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of continuous functions converging uniformly to a function f. Show that if $\lim _{n \rightarrow \infty} x_{n}=x$ then

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

Solution:

We need to show that for all $\epsilon>0$ there exists an n_{0} such that $\left|f_{n}\left(x_{n}\right)-f(x)\right|<\epsilon$ for all $n \geq n_{0}$.
The key step is to use the triangle inequality

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|
$$

f_{n} converges uniformly to f, so for given $\epsilon_{1}>0$ there is an n_{1} such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon_{1}
$$

for all $n \geq n_{1}$ independently of the value of x, so in particular

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\epsilon_{1}
$$

for all $n \geq n_{1}$.

As f is a uniform limit of continuous functions f_{n}, f is continuous. Therefore, for given $\epsilon_{2}>0$ there is an n_{2} such that

$$
\left|f\left(x_{n}\right)-f(x)\right|<\epsilon_{2}
$$

for all $n \geq n_{2}$.
Now, for given ϵ choose $\epsilon_{1}=\epsilon_{2}=\epsilon / 2$. Then for $n_{0}=\max \left(n_{1}, n_{2}\right)$ we find that

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq \epsilon / 2+\epsilon / 2=\epsilon
$$

