MATH 5105 Differential and Integral Analysis Assignment 4 Solutions

(a) Let $g:[a, b] \rightarrow \mathbb{R}$ be bounded. We have proved that if g is Riemann integrable on $[a, b]$, then so is g^{2}. Prove or disprove the converse: if g^{2} is Riemann integrable on $[a, b]$ then g is Riemann integrable on $[a, b]$.
The converse is false. Consider the function

$$
g(x)=\left\{\begin{array}{cc}
1 & x \text { is rational and } x \in[a, b], \\
-1 & x \text { is irrational and } x \in[a, b] .
\end{array}\right.
$$

For the function g, we note that every non-trivial subinterval of $[a, b]$ will contain both irrational and rational numbers. Therefore the maximum and minimum bounds of g, i.e. $M_{i}=1$ and $m_{i}=-1$ are achieved in any subinterval of the partition $\left[x_{i-1}, x_{i}\right]$ of the partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. It follows that for every partition P of $[a, b]$, we have

$$
\begin{gathered}
U(g, P)=\sum_{i=1}^{i=n} M_{i}\left(x_{i}-x_{i-1}\right)=(1) \sum_{i=1}^{i=n}\left(x_{i}-x_{i-1}\right)=\left(x_{n}-x_{0}\right)=(b-a), \\
L(g, P)=\sum_{i=1}^{i=n} m_{i}\left(x_{i}-x_{i-1}\right)=(-1) \sum_{i=1}^{i=n}\left(x_{i}-x_{i-1}\right)=-\left(x_{n}-x_{0}\right)=-(b-a) .
\end{gathered}
$$

Therefore $U(g, P)-L(g, P)=(b-a)-(-(b-a)=2(b-a)$, for all partitions P.
Thus the Riemann integrability condition

$$
U(g, P)-L(g, P)<\epsilon
$$

is not satisfied if $\epsilon<2(b-a)$. Therefore g is not Riemann integrable on $[a, b]$. By comparison, we have

$$
g^{2}(x)=g(x) \cdot g\left(x= \begin{cases}1 & x \text { is rational and } x \in[a, b], \\ 1 & x \text { is irrational and } x \in[a, b],\end{cases}\right.
$$

and we see that the function g^{2} on $[a, b]$ satisfies $g^{2}(x)=1$, for all $x \in[a, b]$, a constant function. Thus for any partition P of $[a, b]$, we have $M_{i}=m_{i}=1$, and

$$
U\left(g^{2}, P\right)=L\left(g^{2}, P\right)=\sum_{i=1}^{i=n}(1)\left(x_{i}-x_{i-1}\right)=(b-a)
$$

and therefore, $U\left(g^{2}, P\right)-L\left(g^{2}, P\right) \equiv 0$ for any partition P. Therefore the function g^{2} is Riemann integrable, with $\int_{a}^{b} g^{2}=(b-a)$.
Thus, we see by counterexample that g^{2} can be integrable when g is not integrable and the converse is not true.
(b) Assume that $h:\left[a, b^{2}\right] \rightarrow \mathbb{R}$ is a continuous function and let $G:[a, b] \rightarrow \mathbb{R}$ denote the following function,

$$
G(x)=\int_{a}^{x^{2}} h(t) d t
$$

Show that G is differentiable and find its derivative.
Define $H(y)=\int_{a}^{y} h(t) d t$ for $y \in\left[a, b^{2}\right]$. By the fundamental theorem of calculus with h a continuous function, we have that H is differentiable with $H^{\prime}(y)=h(y)$.
Now $G(x)=\int_{a}^{x^{2}} h(t) d t$, and so $G(x)=H(y)$ with $y=x^{2}$.
So we have

$$
G^{\prime}(x)=H^{\prime}(y) \cdot y^{\prime}=2 x \cdot h\left(x^{2}\right)
$$

