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1 Exercise for Feedback

1) (a) Let f : [a, b]→ R be Riemann integrable. Define F : [a, b]→ R by F (x) =
∫ x
a
f(t) dt.

(i) Why is f bounded?
(ii) Prove that F is bounded.

(iii) Prove that there exists a c ∈ [a, b] such that F (c) = sup{F (x) : x ∈ [a, b]}.
(iv) Now suppose that f is continuous, and that the point c from (iii) satisfies c ∈ (a, b)

What can you conclude about f(c)?

(b) Let f : [a, b]→ R be bounded. Prove or disprove: if f2 (defined by (f2)(x) = f(x)2) is
Riemann integrable on [a, b] then f is Riemann integrable on [a, b].

Solution:

(a) (i) A Riemann integrable function must be bounded.
(ii) By Theorem 8.4(a) we know that F is continuous on [a, b], and hence bounded (by

a result from Convergence & Continuity).
An alternative proof is to note that

|F (x)| =
∣∣∣∣∫ x

a

f(t) dt
∣∣∣∣ ≤ ∫ x

a

|f(t)| dt ≤ (b− a) sup{f(t) : t ∈ [a, b]} .

(iii) By Theorem 8.4(a), F is continuous on [a, b], hence (by a result from Convergence
& Continuity) attains its upper bound for some c ∈ [a, b]

(iv) We can conclude that f(c) = 0. Proof: By Theorem 8.4(b), if f is continuous then
F is differentiable and f(x) = F ′(x). If F attains its maximum at c ∈ (a, b), then
by Theorem 2.1, F ′(c) = 0. Hence f(c) = 0.

(b) This is false.
A counterexample is given by the bounded function

f(x) =

{
1 x rational,
−1 x irrational.

Clearly f2(x) = 1 (a constant function), and hence f2 is integrable on [a, b], but f is
not (see the example in lectures of a non-integrable function, where we used values 0
and 1 instead of −1 and 1).

2 Extra Exercises

2) Let f : [a, b] → R be continuous. Show that if
∫ b
a
f(x) dx = 0 then there exists a c ∈ (a, b)

such that f(c) = 0. [Hint: use an antiderivative of f .]

Solution:



We use

F (t) =
∫ t

a

f(x) dx .

Then F (a) = 0 and F (b) =
∫ b
a
f(x) dx = 0.

This should remind you of Rolle’s Theorem. We need to check whether we can apply it:

As f is continuous, F is an antiderivative of f : it is differentiable on [a, b] and its derivative
F ′ = f is continuous on [a, b].

Thus the assumptions of Rolle’s Theorem are satisfied, and we conclude that there is a
c ∈ (a, b) such that

0 = F ′(c) = f(c) .

3) Compute limn→∞ fn(x) and limn→∞ f ′n(x) for the following functions:

(a) fn : R→ R,

x 7→ sin(nx)√
n

.

(b) fn : R→ R,

x 7→ 1
n

(
√

1 + n2x2 − 1) ,

(c) fn : R→ R,

x 7→ 1
1 + nx2

.

If the limit doesn’t exist, please indicate clearly for which values of x this is the case and
give a brief indication why (no complete proof necessary).

Solution:

(a) |fn(x)| ≤ 1√
n
→ 0 as n→∞, hence

lim
n→∞

fn(x) = 0 .

f ′n(x) =
√
n cos(nx). With increasing n, this function oscillates with strictly increasing

amplitude and frequency, so

lim
n→∞

f ′n(x) does not exist.

[A proof (not asked for) could be as follows. If | cos(nx)| ≤ 1/2 then | cos(2nx)| ≥ 1/2.
Thus, for all x there exists an increasing subsequence nk such that | cos(nkx)| ≥ 1/2.
This implies |f ′nk

(x)| ≥
√
nk/2, so f ′n(x) cannot converge.]

(b) fn(x) =
√
x2 + 1/n2 − 1/n, hence

lim
n→∞

fn(x) = |x| .

f ′n(x) = nx/
√

1 + n2x2 = x/
√
x2 + 1/n2, hence

lim
n→∞

f ′n(x) =


1 x > 0 ,
0 x = 0 ,
−1 x < 0 .
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(c) fn(x) = 1/(1 + nx2) so that fn(0) = 1, and for x 6= 0 we have |fn(x)| < 1/(nx2), hence

lim
n→∞

fn(x) =

{
1 x = 0 ,
0 x 6= 0 .

f ′n(x) = −2nx/(1 +nx2)2, so that f ′n(0) = 0, and for x 6= 0 we have |fn(x)| < 2/(n|x|3),
hence

lim
n→∞

f ′n(x) = 0 .

4) For a bounded set Ω ⊂ R, show that supy∈Ω |y| − infy∈Ω |y| ≤ supy∈Ω y − infy∈Ω y. [This is
needed in the proof of Theorem 7.7.]
Solution:
This can be shown using a long chain of transformations:

sup
y∈Ω
|y| − inf

y∈Ω
|y| = sup

y∈Ω
|y| − inf

x∈Ω
|x| a change of variables

= sup
y∈Ω
|y|+ sup

x∈Ω
(−|x|) change inf to sup

= sup
x,y∈Ω

(|y| − |x|) combine terms

≤ sup
x,y∈Ω

(|y − x|) ||y| − |x|| < |y − x|

= sup
x,y∈Ω

(y − x) rhs is symmetric in x and y

= sup
y∈Ω

y + sup
x∈Ω

(−x) split terms

= sup
y∈Ω

y − inf
x∈Ω

x change sup to inf

= sup
y∈Ω

y − inf
y∈Ω

y a change of variables

*5) Evaluate

lim
n→∞

∫ π/2

0

sin(nx)
nx

dx .

Solution:
The strategy of the proof is to choose an ε > 0 and consider the intervals [0, ε] and [ε, π/2]
separately.
Using that | sin(t)| ≤ |t|, we estimate∣∣∣∣∫ ε

0

sin(nx)
nx

dx

∣∣∣∣ ≤ ∫ ε

0

∣∣∣∣ sin(nx)
nx

∣∣∣∣ dx ≤ ∫ ε

0

dx = ε .

Using that | sin(t)| ≤ 1, we estimate∣∣∣∣∣
∫ π/2

ε

sin(nx)
nx

dx

∣∣∣∣∣ ≤
∫ π/2

ε

∣∣∣∣ sin(nx)
nx

∣∣∣∣ dx ≤ 1
n

∫ π/2

ε

dx

x
=

1
n

(log(π/2)− log ε) .

Hence ∣∣∣∣∣
∫ π/2

0

sin(nx)
nx

dx

∣∣∣∣∣ ≤ ε+
1
n

(log(π/2)− log ε) ,

and choosing ε = 1/n, we find∣∣∣∣∣
∫ π/2

0

sin(nx)
nx

dx

∣∣∣∣∣ ≤ 1
n

(1 + log(π/2) + log n)→ 0

as n→∞.
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