MTH5105 Differential and Integral Analysis 2012-2013

Solutions 7

1 Exercise for Feedback

1) (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable. Define $F:[a, b] \rightarrow \mathbb{R}$ by $F(x)=\int_{a}^{x} f(t) d t$.
(i) Why is f bounded?
(ii) Prove that F is bounded.
(iii) Prove that there exists a $c \in[a, b]$ such that $F(c)=\sup \{F(x): x \in[a, b]\}$.
(iv) Now suppose that f is continuous, and that the point c from (iii) satisfies $c \in(a, b)$ What can you conclude about $f(c)$?
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Prove or disprove: if $f^{2}\left(\right.$ defined by $\left.\left(f^{2}\right)(x)=f(x)^{2}\right)$ is Riemann integrable on $[a, b]$ then f is Riemann integrable on $[a, b]$.

Solution:

(a) (i) A Riemann integrable function must be bounded.
(ii) By Theorem 8.4(a) we know that F is continuous on $[a, b]$, and hence bounded (by a result from Convergence \& Continuity).
An alternative proof is to note that

$$
|F(x)|=\left|\int_{a}^{x} f(t) d t\right| \leq \int_{a}^{x}|f(t)| d t \leq(b-a) \sup \{f(t): t \in[a, b]\} .
$$

(iii) By Theorem 8.4(a), F is continuous on $[a, b]$, hence (by a result from Convergence \& Continuity) attains its upper bound for some $c \in[a, b]$
(iv) We can conclude that $f(c)=0$. Proof: By Theorem 8.4(b), if f is continuous then F is differentiable and $f(x)=F^{\prime}(x)$. If F attains its maximum at $c \in(a, b)$, then by Theorem 2.1, $F^{\prime}(c)=0$. Hence $f(c)=0$.
(b) This is false.

A counterexample is given by the bounded function

$$
f(x)= \begin{cases}1 & x \text { rational } \\ -1 & x \text { irrational }\end{cases}
$$

Clearly $f^{2}(x)=1$ (a constant function), and hence f^{2} is integrable on $[a, b]$, but f is not (see the example in lectures of a non-integrable function, where we used values 0 and 1 instead of -1 and 1).

2 Extra Exercises

2) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Show that if $\int_{a}^{b} f(x) d x=0$ then there exists a $c \in(a, b)$ such that $f(c)=0$. [Hint: use an antiderivative of f.]
Solution:

We use

$$
F(t)=\int_{a}^{t} f(x) d x
$$

Then $F(a)=0$ and $F(b)=\int_{a}^{b} f(x) d x=0$.
This should remind you of Rolle's Theorem. We need to check whether we can apply it:
As f is continuous, F is an antiderivative of f : it is differentiable on $[a, b]$ and its derivative $F^{\prime}=f$ is continuous on $[a, b]$.
Thus the assumptions of Rolle's Theorem are satisfied, and we conclude that there is a $c \in(a, b)$ such that

$$
0=F^{\prime}(c)=f(c)
$$

3) Compute $\lim _{n \rightarrow \infty} f_{n}(x)$ and $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ for the following functions:
(a) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
x \mapsto \frac{\sin (n x)}{\sqrt{n}}
$$

(b) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
x \mapsto \frac{1}{n}\left(\sqrt{1+n^{2} x^{2}}-1\right),
$$

(c) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
x \mapsto \frac{1}{1+n x^{2}} .
$$

If the limit doesn't exist, please indicate clearly for which values of x this is the case and give a brief indication why (no complete proof necessary).

Solution:

(a) $\left|f_{n}(x)\right| \leq \frac{1}{\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$, hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

$f_{n}^{\prime}(x)=\sqrt{n} \cos (n x)$. With increasing n, this function oscillates with strictly increasing amplitude and frequency, so

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(x) \text { does not exist. }
$$

[A proof (not asked for) could be as follows. If $|\cos (n x)| \leq 1 / 2$ then $|\cos (2 n x)| \geq 1 / 2$. Thus, for all x there exists an increasing subsequence n_{k} such that $\left|\cos \left(n_{k} x\right)\right| \geq 1 / 2$. This implies $\left|f_{n_{k}}^{\prime}(x)\right| \geq \sqrt{n}_{k} / 2$, so $f_{n}^{\prime}(x)$ cannot converge.]
(b) $f_{n}(x)=\sqrt{x^{2}+1 / n^{2}}-1 / n$, hence

$$
\begin{gathered}
\lim _{n \rightarrow \infty} f_{n}(x)=|x| \\
f_{n}^{\prime}(x)=n x / \sqrt{1+n^{2} x^{2}}=x / \sqrt{x^{2}+1 / n^{2}}, \text { hence } \\
\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=\left\{\begin{array}{rr}
1 & x>0 \\
0 & x=0 \\
-1 & x<0
\end{array}\right.
\end{gathered}
$$

(c) $f_{n}(x)=1 /\left(1+n x^{2}\right)$ so that $f_{n}(0)=1$, and for $x \neq 0$ we have $\left|f_{n}(x)\right|<1 /\left(n x^{2}\right)$, hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}
$$

$f_{n}^{\prime}(x)=-2 n x /\left(1+n x^{2}\right)^{2}$, so that $f_{n}^{\prime}(0)=0$, and for $x \neq 0$ we have $\left|f_{n}(x)\right|<2 /\left(n|x|^{3}\right)$, hence

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=0
$$

4) For a bounded set $\Omega \subset \mathbb{R}$, show that $\sup _{y \in \Omega}|y|-\inf _{y \in \Omega}|y| \leq \sup _{y \in \Omega} y-\inf _{y \in \Omega} y$. [This is needed in the proof of Theorem 7.7.]
Solution:
This can be shown using a long chain of transformations:

$$
\begin{aligned}
\sup _{y \in \Omega}|y|-\inf _{y \in \Omega}|y| & =\sup _{y \in \Omega}|y|-\inf _{x \in \Omega}|x| & & \text { a change of variables } \\
& =\sup _{y \in \Omega}|y|+\sup _{x \in \Omega}(-|x|) & & \text { change inf to sup } \\
& =\sup _{x, y \in \Omega}(|y|-|x|) & & \text { combine terms } \\
& \leq \sup _{x, y \in \Omega}(|y-x|) & & \| y|-|x||<|y-x| \\
& =\sup _{x, y \in \Omega}(y-x) & & \text { rhs is symmetric in } x \text { and } y \\
& =\sup _{y \in \Omega} y+\sup _{x \in \Omega}(-x) & & \text { split terms } \\
& =\sup _{y \in \Omega} y-\inf _{x \in \Omega} x & & \text { change sup to inf } \\
& =\sup _{y \in \Omega} y-\inf _{y \in \Omega} y & & \text { a change of variables }
\end{aligned}
$$

*5) Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi / 2} \frac{\sin (n x)}{n x} d x
$$

Solution:

The strategy of the proof is to choose an $\epsilon>0$ and consider the intervals $[0, \epsilon]$ and $[\epsilon, \pi / 2]$ separately.
Using that $|\sin (t)| \leq|t|$, we estimate

$$
\left|\int_{0}^{\epsilon} \frac{\sin (n x)}{n x} d x\right| \leq \int_{0}^{\epsilon}\left|\frac{\sin (n x)}{n x}\right| d x \leq \int_{0}^{\epsilon} d x=\epsilon
$$

Using that $|\sin (t)| \leq 1$, we estimate

$$
\left|\int_{\epsilon}^{\pi / 2} \frac{\sin (n x)}{n x} d x\right| \leq \int_{\epsilon}^{\pi / 2}\left|\frac{\sin (n x)}{n x}\right| d x \leq \frac{1}{n} \int_{\epsilon}^{\pi / 2} \frac{d x}{x}=\frac{1}{n}(\log (\pi / 2)-\log \epsilon)
$$

Hence

$$
\left|\int_{0}^{\pi / 2} \frac{\sin (n x)}{n x} d x\right| \leq \epsilon+\frac{1}{n}(\log (\pi / 2)-\log \epsilon)
$$

and choosing $\epsilon=1 / n$, we find

$$
\left|\int_{0}^{\pi / 2} \frac{\sin (n x)}{n x} d x\right| \leq \frac{1}{n}(1+\log (\pi / 2)+\log n) \rightarrow 0
$$

as $n \rightarrow \infty$.

