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Solutions 7

1 Exercise for Feedback

1) (a) Let f:[a,b] — R be Riemann integrable. Define F : [a,b] — R by F(z) = f; ft)dt.
(i) Why is f bounded?
(ii) Prove that F' is bounded.
(iii) Prove that there exists a ¢ € [a, b] such that F(c) = sup{F(z) : = € [a, b]}.
(iv) Now suppose that f is continuous, and that the point ¢ from (iii) satisfies ¢ € (a,b)
What can you conclude about f(c)?

(b) Let f : [a,b] — R be bounded. Prove or disprove: if f2 (defined by (f?)(x) = f(x)?) is

Riemann integrable on [a, b] then f is Riemann integrable on [a, b].

Solution:

(a) (i) A Riemann integrable function must be bounded.

(ii) By Theorem 8.4(a) we know that F is continuous on [a, b], and hence bounded (by
a result from Convergence & Continuity).
An alternative proof is to note that

|F(2)| =

[ rwal< [Croli< o - gt ce ).

(iii) By Theorem 8.4(a), F' is continuous on [a, b], hence (by a result from Convergence
& Continuity) attains its upper bound for some ¢ € [a, b]

(iv) We can conclude that f(c) = 0. Proof: By Theorem 8.4(b), if f is continuous then
F is differentiable and f(x) = F'(x). If F attains its maximum at ¢ € (a,b), then
by Theorem 2.1, F'(c) = 0. Hence f(c) = 0.

(b) This is false.
A counterexample is given by the bounded function

1 x rational,
-

—1 x irrational.

Clearly f?(z) = 1 (a constant function), and hence f? is integrable on [a,b], but f is
not (see the example in lectures of a non-integrable function, where we used values 0
and 1 instead of —1 and 1).

2 Extra Exercises

2) Let f : [a,b] — R be continuous. Show that if f; f(z)dx = 0 then there exists a ¢ € (a,b)
such that f(c) = 0. [Hint: use an antiderivative of f.]

Solution:



We use

Ft) = /at Fa)dz

Then F(a) =0 and F(b) = f: f(x)dz =0.
This should remind you of Rolle’s Theorem. We need to check whether we can apply it:

As f is continuous, F' is an antiderivative of f: it is differentiable on [a, b] and its derivative
F’ = f is continuous on [a, b].

Thus the assumptions of Rolle’s Theorem are satisfied, and we conclude that there is a
¢ € (a,b) such that

0=F'(c)= f(c) .

3) Compute lim, . frn(z) and lim,,_, f, (x) for the following functions:

(a) fn:R—R,
sin(nx)
vn
() fn:R—=R,
1
xn—>g(\/1—|—n2x2—1),
(¢) fu:R—R,
T —
1+ na?

If the limit doesn’t exist, please indicate clearly for which values of z this is the case and
give a brief indication why (no complete proof necessary).

Solution:

(&) [fn(z)] < % — 0 as n — 00, hence

n

lim f,(x)=0.

n—oo

I (x) = y/ncos(nz). With increasing n, this function oscillates with strictly increasing
amplitude and frequency, so

lim f, (z) does not exist.
n—oo

[A proof (not asked for) could be as follows. If | cos(nx)| < 1/2 then |cos(2nzx)| > 1/2.
Thus, for all x there exists an increasing subsequence ny such that | cos(ngx)| > 1/2.
This implies |f;, (x)] > \/n,/2, so f}(x) cannot converge.]

(b) fu(z) = /22 + 1/n2% — 1/n, hence

lim f(z) = [a] .

n—oo

fr(x) =nx/V1+n222 =x/\/2? + 1/n?, hence

1 >0,
lim f/(z)=< 0 2=0,
-1 z<0.



(¢) fu(z) =1/(1 +na?) so that f,(0) =1, and for z # 0 we have |f,(z)| < 1/(nz?), hence

. 1 z=0,
i fo(@) = {o z#0

fl(z) = —2nz/(1+nz?)?, so that f/(0) = 0, and for z # 0 we have |f,(z)| < 2/(n|z|?),
hence
lim f/(x)=0.

n
n—oo

4) For a bounded set Q C R, show that sup,cq |y| — infyeq |y| < sup,cqy — infyeqy. [This is
needed in the proof of Theorem 7.7.]

This can be shown using a long chain of transformations:

sup |y| — inf |y| = sup |y| — inf |z| a change of variables
ye yeQ ye e
= sup |y| + sup(—|z|) change inf to sup
yeQ z€eQ
= sup (Jy| — |z|) combine terms
z,yeN
< sup (|y — ) lyl = |2l <y — x|
z,ye
= sup (y —x) rhs is symmetric in z and y
z,yeN
= supy + sup(—x) split terms
yeQ z€Q
=supy — inf x change sup to inf
yeQ €N
=supy — inf y a change of variables
yeN yeN

*5) Evaluate
lim " sin(nz) dz
n—oo [, n

Solution:

The strategy of the proof is to choose an € > 0 and consider the intervals [0, €] and [e, 7/2]

separately.
< / dx < / dr =c¢€.
0 0
1

sin(nx) 2 dr 1
—— < - — = —(I 2) — 1 .
do< = [ = ~(log(n/2) ~ loge)

Using that |sin(t)| < ||, we estimate

/ sin(nzx) i
0 nT

Using that |sin(¢)| < 1, we estimate

/2 . /2
/ sin(nx) da S/

nx
/2 s
/ sin(nx) da
0 nx

sin(nx)

nx

nr

Hence

1
< e+ —(log(r/2) —loge) ,

and choosing € = 1/n, we find

/W/Z sin(nx) d
——dzx
0

nx

1
< E(l +log(n/2) +logn) — 0

as n — OQ.



