MATH 5105 Differential and Integral Analysis Assignment 2

- 1. Assume that γ is continuous on [c, d] and differentiable on (c, d).
 - (a) Then prove if γ is non-decreasing (monotone increasing) then $\gamma' \geq 0$.

Proof. Let $x,y \in [c,d].$ We want to show $\gamma'(x) \geq 0 \forall x \in (c,d)$. We have that for any x < y or y < x,

$$0 \le \frac{\gamma(y) - \gamma(x)}{y - x}$$

Therefore if we let $y \to x$ and we get

$$0 \le \gamma'(x).$$

(b) If γ is strictly increasing, is it true that $\gamma' > 0$? Either give a counterexample and show where the proof of (a) fails or prove your statement.

Proof. If γ is strictly increasing, it not true that $\gamma' > 0$. Consider the function $\gamma(x) = x^3$. γ is clearly strictly increasing but $\gamma'(0) = 0$. The proof above fails because

$$0 < \frac{\gamma(y) - \gamma(x)}{y - x}$$

is not preserved into the limit.