MATH 5105 Differential and Integral Analysis Solutions to Assignment 1

1. Using the definition of continuity, show that the following functions are continuous
(a)

$$
q(z)=\frac{1}{z^{3}} \text { at } z_{0} \in(0, \infty)
$$

Proof. Let $z_{0} \in(0, \infty)$. We want to show that given an $\varepsilon>0$, we can choose a $\delta=\delta\left(z_{0}, \varepsilon\right)$ such that if $\left|z-z_{0}\right|<\delta$ then

$$
\left|g(z)-g\left(z_{0}\right)\right|<\varepsilon
$$

We therefore consider

$$
\begin{equation*}
\left|g(z)-g\left(z_{0}\right)\right|=\left|\frac{1}{z^{3}}-\frac{1}{z_{0}^{3}}\right|=\left|\frac{\left(z-z_{0}\right)\left(z^{2}+z z_{0}+z_{0}^{2}\right)}{z^{3} z_{0}^{3}}\right| \tag{0.1}
\end{equation*}
$$

Since $z_{0} \in(0, \infty)$, we know $z_{0}>0$. Therefore if we choose $\delta\left(z_{0}, \varepsilon\right)<\frac{\left|z_{0}\right|}{2}$ then by the reverse triangle inequality we have

$$
|z|-\left|z_{0}\right|,\left|z_{0}\right|-|z| \leq\left|z-z_{0}\right|<\frac{\left|z_{0}\right|}{2}
$$

Rearranging, we find that $\frac{\left|z_{0}\right|}{2}<|z|<\frac{3\left|z_{0}\right|}{2} \Longrightarrow \frac{1}{|z|}<\frac{2}{\left|z_{0}\right|}$. Inserting this into (0.1), we get

$$
\begin{aligned}
\left|g(z)-g\left(z_{0}\right)\right| & \leq\left|\frac{\left(z-z_{0}\right)\left(z^{2}+z z_{0}+z_{0}^{2}\right)}{z^{3} z_{0}^{3}}\right| \leq \frac{8}{\left|z_{0}\right|^{3}\left|z_{0}\right|^{3}}\left(\frac{9}{4}\left|z_{0}\right|^{2}+\frac{3}{2}\left|z_{0}\right|^{2}+\left|z_{0}\right|^{2}\right)\left|z-z_{0}\right| \\
& =\frac{38}{\left|z_{0}\right|^{4}}\left|z-z_{0}\right|
\end{aligned}
$$

Hence we choose $\delta\left(z_{0}, \varepsilon\right)=\frac{\varepsilon\left|z_{0}\right|^{4}}{38}$ we get

$$
\left|g(z)-g\left(z_{0}\right)\right|=\left|\frac{\left(z-z_{0}\right)\left(z^{2}+z z_{0}+z_{0}^{2}\right)}{z^{3} z_{0}^{3}}\right| \leq \frac{38}{\left|z_{0}\right|^{4}}\left|z-z_{0}\right|<=\varepsilon
$$

Recall that we made two choices $\delta\left(z_{0}, \varepsilon\right)<\frac{\left|z_{0}\right|}{2}$ and $\delta\left(z_{0}, \varepsilon\right)=\frac{\varepsilon\left|z_{0}\right|^{4}}{38}$ so finally we must choose

$$
\delta\left(z_{0}, \varepsilon\right)=\min \left\{\frac{\left|z_{0}\right|}{2}, \frac{\varepsilon\left|z_{0}\right|^{4}}{38}\right\}
$$

2. Suppose that $g: I \rightarrow \mathbb{R}$ is differentiable at $x=x_{0}$. Prove the following limit exists

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}+6 h\right)-g\left(x_{0}-6 h\right)}{12 h} .
$$

Is the converse true? That is if the limit

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}+6 h\right)-g\left(x_{0}-6 h\right)}{12 h}=L
$$

exists is g differentiable at $x=a$? (Either prove your answer or give a counterexample).
(4 marks)
Proof. If g is differentiable at x_{0} then

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}+6 h\right)-g\left(x_{0}\right)}{6 h}=g^{\prime}\left(x_{0}\right)
$$

and

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}-6 h\right)-g\left(x_{0}\right)}{-6 h}=g^{\prime}\left(x_{0}\right)
$$

Summing these two expressions we get

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}+6 h\right)-g\left(x_{0}\right)-g(a-6 h)+g\left(x_{0}\right)}{6 h}=2 g^{\prime}\left(x_{0}\right)
$$

or

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{0}+6 h\right)-g\left(x_{0}-6 h\right)}{12 h}=g^{\prime}\left(x_{0}\right) .
$$

The converse is not true - consider the function

$$
g(x)= \begin{cases}x, & x \neq 0 \\ 1, & x=0\end{cases}
$$

Then computing we see that

$$
\lim _{h \rightarrow 0} \frac{g(h)-g(-h)}{2 h}=1
$$

but the function is not even continuous at $x_{0}=0$ and hence is not differentiable.

