§9 Sequences $\&$ Series of Functions
\$9.1 Sequences of Functions
Def" 9.1 .1. (Pointwise convergence)
A sequence of functions $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ where $f_{n}: \Omega(\subseteq \mathbb{R}) \rightarrow \mathbb{R}$
is pontwise convergent to the function $f: \Omega \rightarrow \mathbb{R}$
if for each $x \in \Omega, f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.
Note:
in lems of $\varepsilon-N$, fix $x \in \Omega$ and let $a_{n}=f_{n}\left(x_{g}\right)$, and $a=f\left(x_{0}\right)$, then $a_{n} \rightarrow a$ as $n \rightarrow \infty$.

Example 9.1.2.
(1) $f_{n}(x)=x^{n}, \quad 0 \leqslant x \leqslant 1$.

Note $x^{n} \rightarrow 0$ as $n \rightarrow \infty$,

$$
0 \leqslant x<1
$$

If $0 \leq x<1, x=\frac{1}{1+y}, y>0 \therefore x^{n}=\frac{1}{(1+y)^{n}}=\frac{1}{\left(1+n y+\frac{n(n-1) y^{2}+\ldots}{2!}\right)}$
$\Rightarrow x^{n}<\frac{1}{n y}$ and $\frac{1}{n y} \rightarrow 0$ as $n \rightarrow \infty$
By sandwich theorem: $0 \leq x^{n}<\frac{1}{n y}$ and $\lim _{n \rightarrow \infty} \frac{1}{n y}=0$
$\therefore \lim _{n \rightarrow \infty} x^{n}=0$, so $x^{n} \rightarrow f(x)$ ware $0 \leq x<1 \therefore f(x) \equiv 0$
However, for $x=1: x^{n} \equiv 1 \quad \therefore x^{n} \rightarrow 1$ as $n \rightarrow \infty \therefore f(1)=1$
Pointwise linnet function $f(x)= \begin{cases}0 & 0 \leq x<1 \\ 1 & x=1\end{cases}$
(ii) $f_{n}(x)=\frac{n x}{n+1} ; f_{n}(x) \rightarrow x$ as $n \rightarrow \infty . \therefore f(x)=x$ pointwise
because $\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty \quad \therefore f(x)=x, \forall x \in \mathbb{R}$ limit $f_{n} \cdot C$
(iii) $f_{n}(x)=\frac{1}{(1+x)^{n}}, x \geqslant 0, f(x)=$?? Pontine

Note $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots$.

$$
\therefore n x<(1+x)^{n} \text { for } x>0
$$

$n \rightarrow 0$ For $x=0: f_{n}(0) \equiv 1 \Rightarrow f(0)=1$
In more usual notation:
$\forall \varepsilon>0 \quad \exists n \in N$, such that $\forall n>N \quad a_{n}=f_{n}(x)$

$$
\left|a_{n}-a\right|<\varepsilon
$$

Note N may depend on both $\& \& x$

So we note in the above examples:
pointuise limit fus can be continuous or $\left\{\begin{array}{l}\text { dis contrn wous! } \\ \text { nen-continuous! }\end{array}\right.$

Exeruses ($E \times 7$)

$$
\begin{aligned}
& \text { (i) } f_{n}: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto \frac{\sin n x}{\sqrt{n}} \\
& 0 \leqslant\left|f_{n}(x)\right|=\frac{|\sin n x|}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}} \quad \forall x \in \mathbb{R} \\
& 0 \leqslant \lim _{n \rightarrow \infty}\left|f_{n}(x)\right| \leqslant \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 \quad \therefore \lim _{n \rightarrow \infty}\left|f_{n}(x)\right|=0 \\
& \Rightarrow f(x)=0, \quad \forall x \in \mathbb{R} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \quad f_{n}: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto \frac{1}{n}\left(\sqrt{1+n^{2} x^{2}}-1\right) \\
& \left.\begin{array}{l}
a-b \\
=a^{2}-b^{2}
\end{array} \text { Use } 1+n^{2} x^{2}\right)-1=\left(\sqrt{1+n^{2} x^{2}}-1\right)\left(\sqrt{1+n^{2} x^{2}}+1\right) \\
& \left.=\frac{a^{2}-b^{2}}{a+b}\right) \frac{1}{n}\left(\sqrt{1+n^{2} x^{2}}-1\right)=\frac{1}{n} \frac{\left(n^{2}-x^{2}\right)}{\sqrt{1+n^{2} x^{2}}+1}=\frac{n x^{2}}{\sqrt{1+n^{2} x^{2}}+1} \\
& a=\sqrt{1+n^{2} x^{2}} \\
& b=1 \\
& \text { (iii) } f_{n}: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto \frac{1}{1+n x^{2}} \\
& +\frac{1}{n x} \rightarrow \frac{x}{\sqrt{1}}=|x| \text { as } n \rightarrow \infty \\
& \text { Note limits } \\
& |x| \text { not } x \\
& \text { because } f_{n}(x)>0 \text {. }
\end{aligned}
$$

Note $f_{n}(0)=1, \forall n \quad \therefore f(0)=1$.

For $x \neq 0, n x^{2} \rightarrow \infty$ as $n \rightarrow \infty$. $0 \leqslant \frac{1}{1+n x^{2}} \leqslant \frac{1}{n x^{2}}$, and tor fixed x

$$
\frac{1}{n x^{2}}=\frac{1}{n}\left(\frac{1}{x^{2}}\right) \rightarrow 0 \cdot \frac{1}{x^{2}}=0
$$

\therefore By sandach theorem $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$,
ie. $f(x)=0$, for $x \neq 0$.
f is discontinuous. at $x=0$.

Def ${ }^{n} 9.13$ (uniform convergence)
We say the sequence $\left\{f_{n}\right\}: f_{n}: \Omega(\subseteq \mathbb{R}) \rightarrow \mathbb{R}$ converges uniformly to $f: \Omega \rightarrow \mathbb{R}$ on Ω if for every $\varepsilon>0, \exists N$ such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall n>N \& \forall x \in \Omega \text {. }
$$

Remark N depends only on $\varepsilon \& \Omega$.

$$
f_{n} \rightarrow f
$$

g(f_{n}) lies inside the " ε-tube" for $n>N$

Ex 9.1.4 The functions $f_{n}(x)=x^{n}$ donor converge uniformly to $f(x)=\left\{\begin{array}{l}0, x \in[0,1) \\ 1, x=1\end{array}\right.$
Proof Suppose it converges untormily to $f(x)$.
Then $\forall \varepsilon>0, \exists N$ such that
$\left|f_{n}(x)-f(x)\right|<\varepsilon$, for all $n>N$, and all $x \in[0,1]$
Consider $\varepsilon=\frac{1}{4}$. Given uniform convergence, we have.

$$
\left|f_{n}(x)-f(x)\right|<\frac{1}{4} \text { for all } n>N \text { and } x \in[0,1] \text {. }
$$

Split this condition into 2 parts
(i) $x=1, f(1)=1$ and $f_{n}(1)=1, \forall n$
(ii)

$$
\begin{aligned}
& x \in[0,1), f(x)=0 \\
& \therefore\left|f_{n}(x)-f(x)\right|<\frac{1}{4} \Rightarrow 0 \leqslant f_{n}(x)<\frac{1}{4}, \forall n>N .
\end{aligned}
$$

However, f_{a} is contincoons
and $f_{n}(0)=0, f_{n}(1)=1 \quad \forall n$
$\therefore J{ }^{n} \mathrm{c}$ such that $f_{n}\left(c_{n}\right)=\frac{1}{2}$

Contradiction

$$
f_{n}(x)<\frac{1}{4} \text { for } x \in[0,1], n>N
$$

$f_{n}(1)=1$ for $x=1 \quad \forall n$.
\therefore 丰 c_{n} such that $f_{n}\left(c_{n}\right)=\frac{1}{2} \quad \forall n>f_{1}$
\therefore the sequence f_{n} does not converge uniformly to f.

Important: If a sequence of continuous functions converges point-uise to the function f, and finis continuous, then the sequence f_{n} does not converge minformly to f.

Example 9.1 .5
The function $f_{n}(x)=x^{n}$ converges uniformly for $f(x)=0$ for $x \in[0,1 / 2]$.

Note $\quad\left|f_{n}(x)\right|=\left|x^{n}\right| \leqslant\left(\frac{1}{2}\right)^{n}, \quad \forall x \in[0,1 / 2]$.

$$
\begin{aligned}
& \therefore \quad\left|f_{n}(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty \\
& \therefore f(x)=0, x \in\left[0, \frac{1}{2}\right] \quad \text { pointwise limit } \\
& \quad \text { function. }
\end{aligned}
$$

Given $\varepsilon>0$, we have to find $N=N(\varepsilon)$
such that of $n>N$, then

$$
\left|f_{n}(x)-f(x)\right|=\left|f_{n}(x)\right|<\varepsilon \quad \text { for } \forall x \in[0,1 / 2] \text {. }
$$

So choose N such that $(1 / 2)^{N}<\varepsilon$.
Similar argument
ie. $N \ln \left(\frac{1}{2}\right)<\ln (\varepsilon) \Leftrightarrow-N \ln (2)<\ln (\varepsilon)$
for $x \in[0,0]$ $a<1$

$$
\begin{aligned}
& \therefore\left|f_{n}(x)-f(x)\right|<\varepsilon, n>N>-\frac{\ln (\varepsilon)}{\ln (2)} \\
& \therefore f_{n}(x) \rightarrow f(x) \text { converges unilanmly }
\end{aligned}
$$ for $x \in[0,1 / 2]$.

Note, pictorially, if fun converges iceniformly to $f(x)$, then given $\varepsilon>0$,河N.t. all f_{n} lie in an ε-nba of f

Example 9.1.6
Prove this will work for any interval $[0, p], \forall p<1$
Theorem 9,1.7
Consider a sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ and suppose fun's are continuous and $\left\{f_{n}\right\}$ converges uniformly to $f:[a, b] \rightarrow \mathbb{R}$, then f is also contincoons.
Proof Given $\varepsilon>0$, and $x_{,} x_{0} \in[a, b]$, we need to find a δ such that $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
Now

$$
\begin{array}{rl}
\left|f(x)-f\left(x_{0}\right)\right|=\left|f(x)-f_{n}(x)+f_{n}(x)-f_{n}(x)+f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
u c ? ~ ? ~ & ?<\varepsilon / 3 \\
& \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| .
\end{array}
$$

(i) by uniform convergence, we can find an N such that $\mid f(x)-f_{n}(x \mid<\varepsilon / 3$, for $n>N, \forall x \in[a, b]$.
This implies (uniform convergence)

$$
\left|f(x)-f_{n}(x)\right| \text {, and }\left|f\left(x_{0}\right)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}, n>N \text {. }
$$

(ii) t_{n} is a continuous function for $n \in \mathbb{N}$; so $\exists \delta$ such that

$$
\left|x-x_{0}\right|<\delta, \quad\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\varepsilon / 3, \text { for } x_{0}, x \in[a, b]
$$

(iii) It now follows that if $\left|x-x_{0}\right|<\delta$: $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$, and so f is continivons. provided $\left|x-x_{0}\right|<\delta$ (iii)
The pointrise limit function f of a uniformly con vergent sequence of continuous functions is continuous

Theorem 9.1 .8 Let f_{n} be a seq ${ }^{n}$ of continuous frs on $[a, b] \sum$ suppose $f_{n} \rightarrow f$ uniformly, then

Proof By theorem 9.1.7, f is a continuous function, and hence Riemann Integrable.
So the function $\mathbb{f n}_{n}-f \mid$ is continuous, and therelve RI.
Given $\varepsilon>0, \exists N:\left|f_{n-f}\right|<\frac{\varepsilon}{(b-a)}, \forall x \in[a, b]$, and $n>N$.
It follows that

$$
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| \leq\left|\int_{a}^{b}\left(f_{n}(x)-f(x)\right)^{2} d x\right|
$$

$$
\begin{aligned}
& \leqslant \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \\
& <\int_{a}^{b} \frac{\varepsilon}{(b-a)} d x=\varepsilon
\end{aligned}
$$

Hence $\forall \varepsilon>0, \exists N$, such that $\forall n>N$

$$
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right|<\varepsilon
$$

or $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x=\int_{a}^{b}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x$

Obvious question: what are examples of sequences functions $\quad f_{n} \rightarrow f$ with $\lim _{n \rightarrow \infty} \int f_{n} \neq \int f$? The counterexamples require some explanation.

Dirichlet	This is a good oxslanction
on youtube of	
DAYou To You unexpected behavior for $\lim _{n \rightarrow \infty} \int_{n} \neq \int f$ when $f_{n} \rightarrow f$!	

Second example: $f_{n}:[0,1] \rightarrow \mathbb{R}$

$$
f_{n}(x)=\left\{\begin{array}{ll}
0 & x=0 \\
n & x \in\left(0, \frac{1}{n}\right] \\
0 & x \in\left(\frac{1}{n}, 1\right]
\end{array} \rightarrow \square_{1 / n}\right.
$$

each rectangle has height n $\&$ width $\frac{1}{n}$

$$
\therefore \int_{0}^{1} f_{n}(x) \equiv 1
$$

$$
\therefore \lim \int_{0}^{1} f_{n}(x) \equiv 1
$$

Can be shown using $L\left(f_{n}, P\right), U\left(f_{n}, P\right)$ that

$$
\int_{0}^{1} f_{n}(x) d x \equiv 1 \quad \forall n . \therefore \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x)=1
$$

Also what is the porntuise limit function $f(x)$ of $\left\{f_{n}(x)\right\}$?
Note that $f_{n}(0)=0 \Rightarrow f(0)=\lim _{n \rightarrow \infty} f_{n}(0)=0$.
If $x>0$, then for $n>\frac{1}{x}$, we. $\frac{1}{n}<x, f_{n}(x)=0$.
So $\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \therefore f(x)=0$

$$
\begin{aligned}
\therefore \quad f(x) & \equiv 0 \quad \text { and } \quad \int_{0}^{1} f(x) d x=0 \\
\therefore 1 & =\lim _{n \rightarrow \infty} \int_{0}^{1} f_{a}(x) d x \neq \int_{0}^{1} f(x) d x=0
\end{aligned}
$$

Note $f_{n}(x) \equiv 0^{\prime}$ for $n>\frac{1}{x}$ (divectly from def ${ }^{n}$ of f_{n})
$\therefore\left\{f_{n}(x)\right\}$ is eventually a sequence of 0 's $\therefore f(x)=0$

Completeness theorem for the real nos. R. (Real nos have no gaps or holes) $\forall S \subseteq \mathbb{R}$, if S is bounded above, then sup S exists and $\sup S \in \mathbb{R}$.) Related to this is the role f Candy sequences A sequence $\left\{a_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence inf goren $\varepsilon>0, \exists N$ such that

$$
\left|a_{n}-a_{n}\right|<\varepsilon, \quad \forall n, n>N
$$

Recall that a sequence $\left\{a_{n}\right\}_{1}^{\infty}$ converges if and only if $\left\{a_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence

Theorem 9.1.9
A sequence of functions $\left\{f_{n}\right\}, f_{n}: \Omega \rightarrow \mathbb{R}$, converges uniformly to of if andonlyil for all $\varepsilon>0, \exists N$ such that $\forall n, m>N$

$$
\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon, \quad \forall n, m>N, \quad \forall x \in \Omega
$$

Proof $\left(\Rightarrow\right.$) Suppose $f_{n} \rightarrow f$ uniformly, ie $\forall \varepsilon>0, \exists N$ such that for $\forall n>N$

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right|<\varepsilon / 2, & \forall x \in \Omega \\
\therefore\left|f_{m}(x)-f_{n}(x)\right| & =\left|f_{m}(x)-f(x)+f(x)-f_{n}(x)\right| \\
& \leqslant\left|f_{m}(x)-f(x)\right|+\left|f(x)-f_{n}(x)\right|
\end{aligned}
$$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \forall m, n>N, \forall x \in \Omega
$$

$\therefore\left\{f_{n}\right\}$ is a Cauchy sequence.
$\Leftrightarrow)$ Suppose $\left\{f_{n}(x)\right\}$ is a Cauchy sequence.
We know $\left\{f_{n}(x)\right\}$ converges pointwise for each $x \in \Omega$.
\therefore let $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$. We claim $f_{n} \rightarrow f$ converges initarmly.
Given $\varepsilon>0, \exists N$ such that $\forall m, n>N$

$$
\left|f_{m}(x)-f_{n}(x)\right|<\frac{\varepsilon}{2} \quad \forall x \in \Omega .
$$

Let $n \rightarrow \infty$ \& fix m $>N \Rightarrow\left|f(x)-f_{m}(x)\right| \leqslant \frac{\varepsilon}{2}<\varepsilon$.
ce. $\left\{f_{m}(x)\right\}$ comoges to $f(x)$.
Convergence to a limit \& conchycondition equivalent!
$\$ 9.2$ Series of Functions
Compare with $s_{k}=\sum_{n=1}^{-1} a_{n}^{-}$
Def ${ }^{n} 9.2 .1$ (Series of functions) - $-\lim _{n \rightarrow \infty} s_{k}=s=\sum_{i=1}^{\infty} a_{n}$
Let $\left\{f_{n}\right\}$ be a sequence of functions, $f_{n}: \Omega \rightarrow \mathbb{R}$
$\forall k \in \mathbb{N}$, let $s_{k}(x)=\sum_{n=1}^{k} f_{n}(x)=f_{1}(x)+\cdots+f_{k}(x)$.
be the sequence of partial sums. We say
(i) $\sum_{n=1}^{\infty} f_{n}$ converges pointrise if $\left\{S_{k}\right\}$ converges pontus

$$
S_{k}(x) \rightarrow s(x) \quad(k \rightarrow \infty)
$$

(ii) $\sum_{n=1}^{\infty} f_{n}$ converges untormly if $\left\{s_{k}\right\}$ converges uniforming

$$
s_{k}(x) \xrightarrow{u} s(x) ., \forall x \in \Omega . \quad(k \rightarrow \infty \quad u=u m p o r m)
$$

Example 9.2.2.
$\sum_{n=1}^{\infty} \frac{1}{\left(2+x^{2}\right)^{n}}$ convoges uniformly. for $x \in \mathbb{R}$

Proof We compute the partial sums

$$
\begin{aligned}
S_{k}(x) & =\sum_{n=1}^{k} \frac{1}{\left(2+x^{2}\right)^{n}}=\frac{1}{\left(2+x^{2}\right)} \cdot \frac{1-\left(\frac{1}{2+x^{2}}\right)^{k}}{1-\left(\frac{1}{2+x^{2}}\right)} \quad \begin{array}{l}
\text { genetic series } \\
\\
\end{array}=\frac{1}{\left(2+x^{2}\right)} \frac{\left(1-\frac{1}{\left(2+x^{2}\right)^{2}}, r=\frac{1}{1+x^{2}}\right)}{\left(1+x^{2}\right)\left(\left(2+x^{2}\right)\right.}=\frac{1}{\left(1+x^{2}\right)\left(1-\frac{1}{\left(2+x^{2}\right)^{k}}\right)} .
\end{aligned}
$$

We rote $\frac{1}{\left(2+x^{k}\right)^{k}} \rightarrow 0$ as $k \rightarrow \infty \quad \forall x \in \mathbb{R}$: $\frac{1}{\left(2+x^{2}\right)^{k}} \leqslant \frac{1}{2^{k}}$ and given $\varepsilon>0, \frac{1}{2^{k}}<\varepsilon$ for $k>\ln (\varepsilon) / \ln \left(\frac{1}{2}\right)$. Hence $\frac{1}{2 k} \rightarrow 0$ as $k \rightarrow \infty$

$$
\because S_{k}(x) \rightarrow s(x)=\frac{1}{1+x^{2}} \text { as } k \rightarrow \infty
$$

For uniformity, convergence: given $\varepsilon>0$, We have $\left|s_{k}(x)-s(x)\right|=\frac{1}{\left(2+x^{2}\right)^{k+1}} \leq \frac{1}{2^{k+1}}, \forall x \in \mathbb{R}$. and given $\varepsilon>0$, to ensure $\frac{1}{2^{k+1}}<\varepsilon$, we need

$$
R>-\frac{\ln (\varepsilon)}{\ln (2)}-1(=K)
$$

$\Rightarrow\left|s_{k}(x)-s(x)\right|<\varepsilon$ for $k>K$, and $\forall x \in \mathbb{R}$.
$\therefore \quad \sum_{n=1}^{k} \frac{1}{\left(2+x^{2}\right)^{k}} \rightarrow \frac{1}{1+x^{2}}$ unifaranly as $k \rightarrow \infty$.
$\underset{\substack{\text { equivalent } \\ \text { statement }}}{S_{k}(x)} \rightarrow S_{(x)}^{*}$ uniformly as $k \rightarrow \infty$.

DKA Comment This looked a surprising result to me d 1.e. that somehas the series collapses to $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots$! First simple check:
Let $x=0: \sum_{k=1}^{\infty} \frac{1}{\left(2+0^{2}\right)^{k}}=\sum_{k=1}^{\infty} \frac{1}{2 k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .0=\frac{1^{*}}{1+0^{2}}$, sofar, so good!

A more convincing check (using MATHEMATICA).

So yes, I'm convinced! ©

$$
S_{20}(x)=\sum_{k=1}^{20} \frac{1}{\left(2+x^{2}\right)^{k}}
$$

$$
S(x)=\frac{1}{1+x^{2}}
$$

not bad!

Theorem 9.2.3 Weierstrass M-test.
Suppose that there exists a sequence of ron-negative numbers $\left\{M_{n}\right\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} M_{n}$ converges $(<\infty)$ and also the sequence $\left\{f_{n}\right\}, f_{n}: \Omega \rightarrow \mathbb{R}$ satisties

$$
\left|f_{n}(x)\right| \leqslant M_{n}, \forall x \in \Omega_{1}
$$

then

$$
\sum_{n=1}^{\infty} f_{n}(x) \text { converges uniformly. }
$$

Proof Let $s_{k}(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{k}(x)$
As $\sum_{n=1}^{\infty} M_{n}<\infty$, we hare $\sum_{1}^{1} M_{n}$ converges, we have
$\sum M_{n}$ converges. The Cauchy condition: $\sum_{1} M_{n}$ converges.

$$
s_{n} \rightarrow S \quad, \begin{gathered}
\text { Cauchy } \\
i_{n-}-s_{n k} k \varepsilon \\
\hline
\end{gathered}
$$

$\forall \varepsilon>0, \exists N>0$ such that

$$
l>N
$$

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =s_{n}-s_{m}=\sum_{l=m+1}^{n} M_{l}<\varepsilon \quad n>m \quad M_{l}>0 . \\
\therefore \quad\left|S_{n}(x)-S_{m}(x)\right| & =\left|\sum_{l=m+1}^{n} f_{l}(x)\right| \\
& \leqslant \sum_{l=1}^{n}\left|f_{l}(x)\right| \\
& \leqslant \sum_{l=m+1}^{n+1} M_{l}<\varepsilon, \quad \forall x \in \Omega
\end{aligned}
$$

1.e. $\left|S_{n}(x)-S_{m}(x)\right|<\varepsilon, \quad \forall x \in R, \quad a, m>N_{0}$ -
\therefore The partial sums are Cauchy and $\left\{S_{n}(x)\right\}$ converges uniformly by Tm 9.1.9.
, Note : $0 \leqslant \frac{1}{\left(2+x^{2}\right)^{k} \leq \frac{1}{2}{ }^{R}} \therefore$

Example 9.2.4
(i) Show that the series $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$ converges uniformly for all $x \in \mathbb{R}$.
Proof $\quad\left|\frac{\sin (n x)}{n^{2}}\right| \leq \frac{1}{n^{2}}, \forall x \in \mathbb{R}$

$$
u_{n}=\frac{1}{n^{2}}
$$

Let $M_{n}=\frac{1}{n^{2}}\left(\sum \frac{1}{n^{2}}\right.$ converges! $) \therefore$
(ii) Show $\sum_{n=1}^{\infty} \frac{1}{\left(2+x^{2}\right)^{n}}$ converges uniformly on \mathbb{R}

We note $\frac{1}{\left(2+x^{2}\right)^{n}} \leqslant \frac{1}{2^{n}}\left(=M_{n}\right), \forall x \in \mathbb{R}$
Geom. Series
$\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$ converges
and so $\sum_{n=1}^{\infty} \frac{1}{\left(2+x^{2}\right)^{n}}$ converges uniformly.

$$
\begin{aligned}
& a=\frac{1}{2} r=\frac{1}{2} \\
& S_{k}=\frac{1}{2} \frac{\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}} \\
& \rightarrow 1 \text { as } k \rightarrow \infty
\end{aligned}
$$

