MATH 5105 Differential and Integral Analysis
FExercise Sheet 6

Coursework Exercises

. Let f: R — R be differentiable with bounded derivative. Show that f is uniformly
continuous.

Proof. Consider z,y € R. Then we know by Lemma 3.1.5 of the Lecture notes
that if |f/(€)] < M for all € € R. Then |f(z) — f(y)| < M|z — y| for all z,y € R.

Therefore if we choose §(¢) = 7 then

If(z) — f(y)| < M|z —y| <e.

U

. Consider f(z) = 2 on [a,00) for a > 0. Show that f is uniformly continuous.
Proof. We compute |f'(z)] = ‘—x%‘ < ?23 Hence f is differentiable with bounded
derivative and hence uniformly continuous. O

Problems

. Let f:R—=R, f(z)=2,9: R — R, g(x) =sin(z). Prove or disprove the following
statements

(a) f is uniformly continuous,

Proof. TRUE: f is uniformly continuous. As f’(x) =1 for all x € R, we have
|f'(z)] < M with M = 1 so f has bounded derivative and hence uniform
continuity follows from 1. O

(b) ¢ is uniformly continuous.



Proof. TRUE: g is uniformly continuous

As ¢'(z) = cos(z)Vx € R and |cos(z)| < 1Vx € R = |¢/(x)] < M with
M = 1. Hence g has bounded derivative and the assertion follows from
Question 1. 0

fg is uniformly continuous,

Proof. FALSE: fg is not uniformly continuous.

As (fg) (x) = xcos(x) + sin(x) we see that (fg)' is not bounded. This does
not prove that fg is not uniformly continuous but indicates that the reason for
the lack of uniform continuity is that at = 2n7, we find that (fg)'(z) = 2nw
which becomes arbitrarily large as n gets large.

To prove this consider § = 4, = % and show that it is possible to pick
T, Yn € R with |z, — y,| < §,, but satisfying

| Ty, sin(zy,) — yn sin(y, )| > 1.

We claim that the choice x, = 2n7 and y, = 2nm7 + % satisfies the above
inequalities. To see this, first note that

1 1
[T — Yn| = < -
nrooon

as required. Furthermore, to show that |z, sin(z,) — yn sin(y,)| > 1, we note
that

Ty sin(x,) = 2nmsin2nmT =0

and

. . 1
Yn Sln(yn) =YpSIM | —

nm
so that

. . 1
’xn Sln(xn) —Yn Sln(yn)| = YnpSINn —.
nm

But sin(z) > Z for z € (0,7/2) so that sin -1 > 5L and therefore

: . . 1
|y sin(zy,) — ypn sin(yn)| = yn sin g > —>1

as required.



(d) The function

fap w0
1, =0

is uniformly continuous.

Proof. TRUE: h(x) is uniformly continuous.
For x # 0 we use the quotient rule and obtain

hxx>__<?>’Cw__<wcoaxl;snwx»

and for x = 0, using L’Hopital’s rule, we get

h'(0) = lim 75“158(’”) L lim sin@) - = lim cos(x) = 1
z—0 x z—0 x2 z—0 2x
— lim Ln(a:) —0.
z—0 2
As
lim /() = lim x cos(z) — sin(x) — lim cos(x) + xsin(x) — cos(x) — 0= 1(0)
z—0 z—0 x2 z—0 2x

then A’ is continuous and hence bounded on [—L, L] for any L > 0. Addition-
ally, if |x| > L, we estimate

, cos(z) sin(x) 1 1
< — —.
W (@)l < T x2 <L+L2
Therefore A’ is bounded on R and the assertion follows from 1. OJ

4. Let f:(0,1) — R be continuous. Show that

(a) f is uniformly continuous if lim,_,o f(z) and lim,_,; f(x) exists.

Proof. f A = lim,_,o f(x) and B = lim,_,; f(x) exists then the function
g :[0,1] — R defined by

A z =0.
gle)={ fl@) O<az<1,
B r=1

is continuous on [0, 1] and therefore uniformly continuous on [0, 1]. The func-
tion f is a restriction of g to the smaller interval (0,1) and therefore also
uniformly continuous. O



(b) If f is uniformly continuous then lim,_,o f(x) and lim,_,; f(z) exists.

Proof. We start by showing that f is bounded. Let € > 0. Then there exists
a 0 > 0 such that |f(x) — f(y))| < e for any two points x,y € (0,1) that
are less than distance § apart. Now two arbitrary points u,v € (0,1) are

less than distance one apart and can therefore be connected by a chain of

n = L%J points such that two consecutive points are less than distance

apart. Therefore, |f(u) — f(v)| < (n + 1)e is finite and f must be bounded.
We now show that lim,_,o f(x) exists (the case of x — 1 is exactly analogous).
As we have established that f is bounded, we know that for 0 < § < 1,

a(0) =inf{f(z) |0 <z <d} & b(0)=sup{f(z)]|0<z<d}

are well defined, bounded functions of §. Moreover, a(d) increases as 6 — 0
and b(J) decreases as 0 — 0. As a(d) < b(J) both

a=lima(d), & b=1lmb(J)
6—0

6—0

exists. If we can show that a = b then it follows that lim,_o f(z) = a. We
bound

b(0) — a(0) = sup{f(z) | 0 <z < b} —sup{f(y) [0 <y < I}
=sup{f(z) |0 <z <6} +sup{—f(y) | 0 <y <}
=sup{f(z) - f(y) [0 <y <d} <e,

so that for any € > 0 there exists a § > 0 such that
b(6) < a(d) +e.
But this implies b < a where the equality follows. O

5. Show that the following functions are uniformly continuous by directly verifying
the € -9 definition

(a) h(z) = 3 on [3,00),

Proof. Consider

1 1
h(z) —h =|-—-
) -l = |1 - 2]
_|1*~Y
=1
. 1 1
Since z,y > 5 = w0 < 4 so that
1 1
h(z) —h =|-—=-
) -l = [ - 2]
< 4|z —y|
Therefore we can choose 0 = £. O



€ Y
x+1_ﬁ
z(y+1) —ylx+1)

(z+1)y+1) ‘

r—y
(l‘+1)(y+1)'
Nowas0<z,y<2 = l<axz+1l,y+1<3or|z+1],|y+ 1] > 1so that

I
() = hiw)| = | 5~ 5

<z —y

Therefore we can choose § = ¢.

6. Let f :[a,b] — R be Riemann integrable and ¢ € R.
(a) Given a partition P of [a,b], show that
Proof. For ¢ > 0 we have
supcf(z) =csup f(z), & inf c¢f(x) =cinf f(x),
x€l; zel; zel; x€el;
so that
sup cf(x) — inf cf(x) = ¢ (sup f(x) — inf f(x)) .
z€l; zel; xCl; zel;
If ¢ <0, we have instead
supcf(z) =cinf f(z), & inf c¢f(x) =csup f(x)
z€l; zel; zel; z€l;
so that
sup cf(x) — inf cf(x) = —c <sup f(x) — inf f(:n)) .
zel; z€l; z€l; z€l;
Taken together, we get
sup cf(xz) — inf cf(x) = || <sup f(x) — inf f(m)) .
x€l; zel; zel; z€l;
Multiplying by Az; and summing over all ¢ we get the desired result. O



(b) Show that cf is integrable and that

bcf(ac)dx =c bf(x)d:c
/ /

Proof. WU (f,P)— L(f, P) < ¢ for some € > 0 then also

Ulef, P) = L(cf, P) < |e|(U(f, P) = L(f, P)) <|ce.

By Riemann’s integrability criterion, cf is integrable. Finally for ¢ > 0, we
have

L(cf,P)=cL(f, P /f Ydx < cU(f,P) =U(cf,P)

and for ¢ < 0 we have

L(cf, P) = cU(f, P / f(z)dz < cL(f, P) = U(f. P)

/abcf(x)dm = c/abf(a:)da;

follows. O

so that in both cases

(c) Let @« € Rand f:[0,1] — R be given by

f(:r)—{ z®, z€{}|keN},

0, otherwise.

For which values of « is f Riemann integrable? If f is Riemann integrable
what is the value of fo x)dz?

Proof. If a < 0 then f is unbounded and therefore not Riemann integrable.
Now consider the case where oo > 0. Then f is bounded by 1
As f is zero on all irrational numbers L(f, P) = 0 for all P € P, and thus

/ ; f(z)dz =

Consider the partition on [0, 1] by

I ERCES PR n?}

) n27 n2 ) Y n2 ) n2

into one interval of Wldth and n? — n intervals of Wldth



For z > 1, f(x) is non-zero at precisely n points, so that sup,e¢;, f(z) is non-
zero on the left-most interval of width % and at most 2n intervals of width
L. Th

3 us

1 1 3
U(f,Po) < —+2n— = —
n nZ2 n

so that f is Riemann integrable and fol f(z)dz = 0. O



