
MATH 5105 Differential and Integral Analysis

Exercise Sheet 6

Coursework Exercises

1. Let f : R→ R be differentiable with bounded derivative. Show that f is uniformly
continuous.

Proof. Consider x, y ∈ R. Then we know by Lemma 3.1.5 of the Lecture notes
that if |f ′(ξ)| ≤ M for all ξ ∈ R. Then |f(x) − f(y)| ≤ M |x − y| for all x, y ∈ R.
Therefore if we choose δ(ε) = ε

M then

|f(x)− f(y)| ≤M |x− y| < ε.

2. Consider f(x) = 1
x2

on [a,∞) for a > 0. Show that f is uniformly continuous.

Proof. We compute |f ′(x)| =
∣∣− 2

x3

∣∣ ≤ 2
a3

. Hence f is differentiable with bounded
derivative and hence uniformly continuous.

Problems

3. Let f : R→ R, f(x) = x, g : R→ R, g(x) = sin(x). Prove or disprove the following
statements

(a) f is uniformly continuous,

Proof. TRUE: f is uniformly continuous. As f ′(x) = 1 for all x ∈ R, we have
|f ′(x)| ≤ M with M = 1 so f has bounded derivative and hence uniform
continuity follows from 1.

(b) g is uniformly continuous.
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Proof. TRUE: g is uniformly continuous

As g′(x) = cos(x)∀x ∈ R and | cos(x)| ≤ 1∀x ∈ R =⇒ |g′(x)| ≤ M with
M = 1. Hence g has bounded derivative and the assertion follows from
Question 1.

(c) fg is uniformly continuous,

Proof. FALSE: fg is not uniformly continuous.

As (fg)′(x) = x cos(x) + sin(x) we see that (fg)′ is not bounded. This does
not prove that fg is not uniformly continuous but indicates that the reason for
the lack of uniform continuity is that at x = 2nπ, we find that (fg)′(x) = 2nπ
which becomes arbitrarily large as n gets large.

To prove this consider δ = δn = 1
n and show that it is possible to pick

xn, yn ∈ R with |xn − yn| < δn but satisfying

|xn sin(xn)− yn sin(yn)| ≥ 1.

We claim that the choice xn = 2nπ and yn = 2nπ + 1
nπ satisfies the above

inequalities. To see this, first note that

|xn − yn| =
1

nπ
<

1

n

as required. Furthermore, to show that |xn sin(xn)− yn sin(yn)| ≥ 1, we note
that

xn sin(xn) = 2nπ sin 2nπ = 0

and

yn sin(yn) = yn sin

(
1

nπ

)
so that

|xn sin(xn)− yn sin(yn)| = yn sin
1

nπ
.

But sin(z) > z
2 for z ∈ (0, π/2) so that sin 1

nπ >
1

2nπ and therefore

|xn sin(xn)− yn sin(yn)| = yn sin

(
1

nπ

)
>

yn
2nπ

> 1

as required.
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(d) The function {
g(x)
f(x) , x 6= 0

1, x = 0

is uniformly continuous.

Proof. TRUE: h(x) is uniformly continuous.

For x 6= 0 we use the quotient rule and obtain

h′(x) =

(
g

f

)′
(x) =

(x cos(x)− sin(x))

x2

and for x = 0, using L’Hôpital’s rule, we get

h′(0) = lim
x→0

sin(x)
x − 1

x
= lim

x→0

sin(x)− x
x2

= lim
x→0

cos(x)− 1

2x

= lim
x→0

− sin(x)

2
= 0.

As

lim
x→0

h′(x) = lim
x→0

x cos(x)− sin(x)

x2
= lim

x→0

cos(x) + x sin(x)− cos(x)

2x
= 0 = h′(0)

then h′ is continuous and hence bounded on [−L,L] for any L > 0. Addition-
ally, if |x| > L, we estimate

|h′(x)| ≤
∣∣∣∣cos(x)

x

∣∣∣∣+

∣∣∣∣sin(x)

x2

∣∣∣∣ < 1

L
+

1

L2
.

Therefore h′ is bounded on R and the assertion follows from 1.

4. Let f : (0, 1)→ R be continuous. Show that

(a) f is uniformly continuous if limx→0 f(x) and limx→1 f(x) exists.

Proof. If A = limx→0 f(x) and B = limx→1 f(x) exists then the function
g : [0, 1]→ R defined by

g(x) =


A x = 0.
f(x) 0 < x < 1,
B x = 1

is continuous on [0, 1] and therefore uniformly continuous on [0, 1]. The func-
tion f is a restriction of g to the smaller interval (0, 1) and therefore also
uniformly continuous.
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(b) If f is uniformly continuous then limx→0 f(x) and limx→1 f(x) exists.

Proof. We start by showing that f is bounded. Let ε > 0. Then there exists
a δ > 0 such that |f(x) − f(y))| < ε for any two points x, y ∈ (0, 1) that
are less than distance δ apart. Now two arbitrary points u, v ∈ (0, 1) are
less than distance one apart and can therefore be connected by a chain of
n =

⌊
1
δ

⌋
points such that two consecutive points are less than distance δ

apart. Therefore, |f(u)− f(v)| < (n+ 1)ε is finite and f must be bounded.

We now show that limx→0 f(x) exists (the case of x→ 1 is exactly analogous).
As we have established that f is bounded, we know that for 0 < δ < 1,

a(δ) = inf{f(x) | 0 < x < δ} & b(δ) = sup{f(x) | 0 < x < δ}

are well defined, bounded functions of δ. Moreover, a(δ) increases as δ → 0
and b(δ) decreases as δ → 0. As a(δ) ≤ b(δ) both

a = lim
δ→0

a(δ), & b = lim
δ→0

b(δ)

exists. If we can show that a = b then it follows that limx→0 f(x) = a. We
bound

b(δ)− a(δ) = sup{f(x) | 0 < x < δ} − sup{f(y) | 0 < y < δ}
= sup{f(x) | 0 < x < δ}+ sup{−f(y) | 0 < y < δ}
= sup{f(x)− f(y) | 0 < y < δ} ≤ ε,

so that for any ε > 0 there exists a δ > 0 such that

b(δ) ≤ a(δ) + ε.

But this implies b ≤ a where the equality follows.

5. Show that the following functions are uniformly continuous by directly verifying
the ε -δ definition

(a) h(x) = 1
x on [12 ,∞),

Proof. Consider

|h(x)− h(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣
=

∣∣∣∣x− yxy

∣∣∣∣
Since x, y > 1

2 =⇒
∣∣∣ 1
xy

∣∣∣ < 4 so that

|h(x)− h(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣
≤ 4|x− y|

Therefore we can choose δ = ε
4 .
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(b) h(x) = x
x+1 on [0, 2].

Proof.

|h(x)− h(y)| =
∣∣∣∣ x

x+ 1
− y

y + 1

∣∣∣∣
≤
∣∣∣∣x(y + 1)− y(x+ 1)

(x+ 1)(y + 1)

∣∣∣∣
=

∣∣∣∣ x− y
(x+ 1)(y + 1)

∣∣∣∣
Now as 0 < x, y < 2 =⇒ 1 < x+ 1, y + 1 < 3 or |x+ 1|, |y + 1| > 1 so that

|h(x)− h(y)| =
∣∣∣∣ x

x+ 1
− y

y + 1

∣∣∣∣
≤ |x− y|

Therefore we can choose δ = ε.

6. Let f : [a, b]→ R be Riemann integrable and c ∈ R.

(a) Given a partition P of [a, b], show that

U(cf, P )− L(cf, P ) ≤ |c|(U(f, P )− L(f, P )).

Proof. For c ≥ 0 we have

sup
x∈Ii

cf(x) = c sup
x∈Ii

f(x), & inf
x∈Ii

cf(x) = c inf
x∈Ii

f(x),

so that

sup
x∈Ii

cf(x)− inf
x∈Ii

cf(x) = c

(
sup
x∈Ii

f(x)− inf
x∈Ii

f(x)

)
.

If c ≤ 0, we have instead

sup
x∈Ii

cf(x) = c inf
x∈Ii

f(x), & inf
x∈Ii

cf(x) = c sup
x∈Ii

f(x)

so that

sup
x∈Ii

cf(x)− inf
x∈Ii

cf(x) = −c
(

sup
x∈Ii

f(x)− inf
x∈Ii

f(x)

)
.

Taken together, we get

sup
x∈Ii

cf(x)− inf
x∈Ii

cf(x) = |c|
(

sup
x∈Ii

f(x)− inf
x∈Ii

f(x)

)
.

Multiplying by 4xi and summing over all i we get the desired result.

5



(b) Show that cf is integrable and that∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx.

Proof. If U(f, P )− L(f, P ) ≤ ε for some ε > 0 then also

U(cf, P )− L(cf, P ) ≤ |c|(U(f, P )− L(f, P )) ≤ |c|ε.

By Riemann’s integrability criterion, cf is integrable. Finally for c ≥ 0, we
have

L(cf, P ) = cL(f, P ) ≤ c
∫ b

a
f(x)dx ≤ cU(f, P ) = U(cf, P )

and for c ≤ 0 we have

L(cf, P ) = cU(f, P ) ≤ c
∫ b

a
f(x)dx ≤ cL(f, P ) = U(f, P )

so that in both cases ∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx

follows.

(c) Let α ∈ R and f : [0, 1]→ R be given by

f(x) =

{
xα, x ∈

{
1
k | k ∈ N

}
,

0, otherwise.

For which values of α is f Riemann integrable? If f is Riemann integrable
what is the value of

∫ 1
0 f(x)dx?

Proof. If α < 0 then f is unbounded and therefore not Riemann integrable.

Now consider the case where α ≥ 0. Then f is bounded by 1.

As f is zero on all irrational numbers L(f, P ) = 0 for all P ∈ P, and thus∫ 1

0

f(x)dx = 0.

Consider the partition on [0, 1] by

P =

{
0,
n

n2
,
(n+ 1)

n2
, · · · , (n2 − 1)

n2
,
n2

n2

}
into one interval of width 1

n and n2 − n intervals of width 1
n2 .
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For x ≥ 1
n , f(x) is non-zero at precisely n points, so that supx∈Ii f(x) is non-

zero on the left-most interval of width 1
n and at most 2n intervals of width

1
n2 . Thus

U(f, Pn) ≤ 1

n
+ 2n

1

n2
=

3

n

so that f is Riemann integrable and
∫ 1
0 f(x)dx = 0.
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