MATH 5105 Differential and Integral Analysis Exercise Sheet 6

Coursework Exercises

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with bounded derivative. Show that f is uniformly continuous.

Proof. Consider $x, y \in \mathbb{R}$. Then we know by Lemma 3.1.5 of the Lecture notes that if $\left|f^{\prime}(\xi)\right| \leq M$ for all $\xi \in \mathbb{R}$. Then $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in \mathbb{R}$. Therefore if we choose $\delta(\varepsilon)=\frac{\varepsilon}{M}$ then

$$
|f(x)-f(y)| \leq M|x-y|<\varepsilon
$$

2. Consider $f(x)=\frac{1}{x^{2}}$ on $[a, \infty)$ for $a>0$. Show that f is uniformly continuous.

Proof. We compute $\left|f^{\prime}(x)\right|=\left|-\frac{2}{x^{3}}\right| \leq \frac{2}{a^{3}}$. Hence f is differentiable with bounded derivative and hence uniformly continuous.

Problems

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x, g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\sin (x)$. Prove or disprove the following statements
(a) f is uniformly continuous,

Proof. TRUE: f is uniformly continuous. As $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$, we have $\left|f^{\prime}(x)\right| \leq M$ with $M=1$ so f has bounded derivative and hence uniform continuity follows from 1 .
(b) g is uniformly continuous.

Proof. TRUE: g is uniformly continuous
As $g^{\prime}(x)=\cos (x) \forall x \in \mathbb{R}$ and $|\cos (x)| \leq 1 \forall x \in \mathbb{R} \Longrightarrow\left|g^{\prime}(x)\right| \leq M$ with $M=1$. Hence g has bounded derivative and the assertion follows from Question 1.
(c) $f g$ is uniformly continuous,

Proof. FALSE: $f g$ is not uniformly continuous.
As $(f g)^{\prime}(x)=x \cos (x)+\sin (x)$ we see that $(f g)^{\prime}$ is not bounded. This does not prove that $f g$ is not uniformly continuous but indicates that the reason for the lack of uniform continuity is that at $x=2 n \pi$, we find that $(f g)^{\prime}(x)=2 n \pi$ which becomes arbitrarily large as n gets large.
To prove this consider $\delta=\delta_{n}=\frac{1}{n}$ and show that it is possible to pick $x_{n}, y_{n} \in \mathbb{R}$ with $\left|x_{n}-y_{n}\right|<\delta_{n}$ but satisfying

$$
\left|x_{n} \sin \left(x_{n}\right)-y_{n} \sin \left(y_{n}\right)\right| \geq 1 .
$$

We claim that the choice $x_{n}=2 n \pi$ and $y_{n}=2 n \pi+\frac{1}{n \pi}$ satisfies the above inequalities. To see this, first note that

$$
\left|x_{n}-y_{n}\right|=\frac{1}{n \pi}<\frac{1}{n}
$$

as required. Furthermore, to show that $\left|x_{n} \sin \left(x_{n}\right)-y_{n} \sin \left(y_{n}\right)\right| \geq 1$, we note that

$$
x_{n} \sin \left(x_{n}\right)=2 n \pi \sin 2 n \pi=0
$$

and

$$
y_{n} \sin \left(y_{n}\right)=y_{n} \sin \left(\frac{1}{n \pi}\right)
$$

so that

$$
\left|x_{n} \sin \left(x_{n}\right)-y_{n} \sin \left(y_{n}\right)\right|=y_{n} \sin \frac{1}{n \pi} .
$$

But $\sin (z)>\frac{z}{2}$ for $z \in(0, \pi / 2)$ so that $\sin \frac{1}{n \pi}>\frac{1}{2 n \pi}$ and therefore

$$
\left|x_{n} \sin \left(x_{n}\right)-y_{n} \sin \left(y_{n}\right)\right|=y_{n} \sin \left(\frac{1}{n \pi}\right)>\frac{y_{n}}{2 n \pi}>1
$$

as required.
(d) The function

$$
\left\{\begin{array}{cl}
\frac{g(x)}{f(x)}, & x \neq 0 \\
1, & x=0
\end{array}\right.
$$

is uniformly continuous.
Proof. TRUE: $h(x)$ is uniformly continuous.
For $x \neq 0$ we use the quotient rule and obtain

$$
h^{\prime}(x)=\left(\frac{g}{f}\right)^{\prime}(x)=\frac{(x \cos (x)-\sin (x))}{x^{2}}
$$

and for $x=0$, using L'Hôpital's rule, we get

$$
\begin{aligned}
h^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{\frac{\sin (x)}{x}-1}{x}=\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos (x)-1}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{-\sin (x)}{2}=0 .
\end{aligned}
$$

As
$\lim _{x \rightarrow 0} h^{\prime}(x)=\lim _{x \rightarrow 0} \frac{x \cos (x)-\sin (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos (x)+x \sin (x)-\cos (x)}{2 x}=0=h^{\prime}(0)$
then h^{\prime} is continuous and hence bounded on $[-L, L]$ for any $L>0$. Additionally, if $|x|>L$, we estimate

$$
\left|h^{\prime}(x)\right| \leq\left|\frac{\cos (x)}{x}\right|+\left|\frac{\sin (x)}{x^{2}}\right|<\frac{1}{L}+\frac{1}{L^{2}} .
$$

Therefore h^{\prime} is bounded on \mathbb{R} and the assertion follows from 1 .
4. Let $f:(0,1) \rightarrow \mathbb{R}$ be continuous. Show that
(a) f is uniformly continuous if $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ exists.

Proof. If $A=\lim _{x \rightarrow 0} f(x)$ and $B=\lim _{x \rightarrow 1} f(x)$ exists then the function $g:[0,1] \rightarrow \mathbb{R}$ defined by

$$
g(x)=\left\{\begin{array}{cc}
A & x=0 \\
f(x) & 0<x<1, \\
B & x=1
\end{array}\right.
$$

is continuous on $[0,1]$ and therefore uniformly continuous on $[0,1]$. The function f is a restriction of g to the smaller interval $(0,1)$ and therefore also uniformly continuous.
(b) If f is uniformly continuous then $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ exists.

Proof. We start by showing that f is bounded. Let $\varepsilon>0$. Then there exists a $\delta>0$ such that $\mid f(x)-f(y)) \mid<\varepsilon$ for any two points $x, y \in(0,1)$ that are less than distance δ apart. Now two arbitrary points $u, v \in(0,1)$ are less than distance one apart and can therefore be connected by a chain of $n=\left\lfloor\frac{1}{\delta}\right\rfloor$ points such that two consecutive points are less than distance δ apart. Therefore, $|f(u)-f(v)|<(n+1) \varepsilon$ is finite and f must be bounded.
We now show that $\lim _{x \rightarrow 0} f(x)$ exists (the case of $x \rightarrow 1$ is exactly analogous). As we have established that f is bounded, we know that for $0<\delta<1$,

$$
a(\delta)=\inf \{f(x) \mid 0<x<\delta\} \quad \& \quad b(\delta)=\sup \{f(x) \mid 0<x<\delta\}
$$

are well defined, bounded functions of δ. Moreover, $a(\delta)$ increases as $\delta \rightarrow 0$ and $b(\delta)$ decreases as $\delta \rightarrow 0$. As $a(\delta) \leq b(\delta)$ both

$$
a=\lim _{\delta \rightarrow 0} a(\delta), \quad \& \quad b=\lim _{\delta \rightarrow 0} b(\delta)
$$

exists. If we can show that $a=b$ then it follows that $\lim _{x \rightarrow 0} f(x)=a$. We bound

$$
\begin{aligned}
b(\delta)-a(\delta) & =\sup \{f(x) \mid 0<x<\delta\}-\sup \{f(y) \mid 0<y<\delta\} \\
& =\sup \{f(x) \mid 0<x<\delta\}+\sup \{-f(y) \mid 0<y<\delta\} \\
& =\sup \{f(x)-f(y) \mid 0<y<\delta\} \leq \varepsilon,
\end{aligned}
$$

so that for any $\varepsilon>0$ there exists a $\delta>0$ such that

$$
b(\delta) \leq a(\delta)+\varepsilon .
$$

But this implies $b \leq a$ where the equality follows.
5. Show that the following functions are uniformly continuous by directly verifying the $\varepsilon-\delta$ definition
(a) $h(x)=\frac{1}{x}$ on $\left[\frac{1}{2}, \infty\right)$,

Proof. Consider

$$
\begin{aligned}
|h(x)-h(y)| & =\left|\frac{1}{x}-\frac{1}{y}\right| \\
& =\left|\frac{x-y}{x y}\right|
\end{aligned}
$$

Since $x, y>\frac{1}{2} \Longrightarrow\left|\frac{1}{x y}\right|<4$ so that

$$
\begin{aligned}
|h(x)-h(y)| & =\left|\frac{1}{x}-\frac{1}{y}\right| \\
& \leq 4|x-y|
\end{aligned}
$$

Therefore we can choose $\delta=\frac{\varepsilon}{4}$.
(b) $h(x)=\frac{x}{x+1}$ on $[0,2]$.

Proof.

$$
\begin{aligned}
|h(x)-h(y)| & =\left|\frac{x}{x+1}-\frac{y}{y+1}\right| \\
& \leq\left|\frac{x(y+1)-y(x+1)}{(x+1)(y+1)}\right| \\
& =\left|\frac{x-y}{(x+1)(y+1)}\right|
\end{aligned}
$$

Now as $0<x, y<2 \Longrightarrow 1<x+1, y+1<3$ or $|x+1|,|y+1|>1$ so that

$$
\begin{aligned}
|h(x)-h(y)| & =\left|\frac{x}{x+1}-\frac{y}{y+1}\right| \\
& \leq|x-y|
\end{aligned}
$$

Therefore we can choose $\delta=\varepsilon$.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $c \in \mathbb{R}$.
(a) Given a partition P of $[a, b]$, show that

$$
U(c f, P)-L(c f, P) \leq|c|(U(f, P)-L(f, P)) .
$$

Proof. For $c \geq 0$ we have

$$
\sup _{x \in I_{i}} c f(x)=c \sup _{x \in I_{i}} f(x), \quad \& \quad \inf _{x \in I_{i}} c f(x)=c \inf _{x \in I_{i}} f(x),
$$

so that

$$
\sup _{x \in I_{i}} c f(x)-\inf _{x \in I_{i}} c f(x)=c\left(\sup _{x \in I_{i}} f(x)-\inf _{x \in I_{i}} f(x)\right) .
$$

If $c \leq 0$, we have instead

$$
\sup _{x \in I_{i}} c f(x)=c \inf _{x \in I_{i}} f(x), \quad \& \quad \inf _{x \in I_{i}} c f(x)=c \sup _{x \in I_{i}} f(x)
$$

so that

$$
\sup _{x \in I_{i}} c f(x)-\inf _{x \in I_{i}} c f(x)=-c\left(\sup _{x \in I_{i}} f(x)-\inf _{x \in I_{i}} f(x)\right) .
$$

Taken together, we get

$$
\sup _{x \in I_{i}} c f(x)-\inf _{x \in I_{i}} c f(x)=|c|\left(\sup _{x \in I_{i}} f(x)-\inf _{x \in I_{i}} f(x)\right) .
$$

Multiplying by $\triangle x_{i}$ and summing over all i we get the desired result.
(b) Show that $c f$ is integrable and that

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x .
$$

Proof. If $U(f, P)-L(f, P) \leq \varepsilon$ for some $\varepsilon>0$ then also

$$
U(c f, P)-L(c f, P) \leq|c|(U(f, P)-L(f, P)) \leq|c| \varepsilon .
$$

By Riemann's integrability criterion, $c f$ is integrable. Finally for $c \geq 0$, we have

$$
L(c f, P)=c L(f, P) \leq c \int_{a}^{b} f(x) d x \leq c U(f, P)=U(c f, P)
$$

and for $c \leq 0$ we have

$$
L(c f, P)=c U(f, P) \leq c \int_{a}^{b} f(x) d x \leq c L(f, P)=U(f, P)
$$

so that in both cases

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

follows.
(c) Let $\alpha \in \mathbb{R}$ and $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{cc}
x^{\alpha}, & x \in\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\}, \\
0, & \text { otherwise } .
\end{array}\right.
$$

For which values of α is f Riemann integrable? If f is Riemann integrable what is the value of $\int_{0}^{1} f(x) d x$?

Proof. If $\alpha<0$ then f is unbounded and therefore not Riemann integrable. Now consider the case where $\alpha \geq 0$. Then f is bounded by 1 .
As f is zero on all irrational numbers $L(f, P)=0$ for all $P \in \mathcal{P}$, and thus

$$
\underline{\int}_{0}^{1} f(x) d x=0 .
$$

Consider the partition on $[0,1]$ by

$$
P=\left\{0, \frac{n}{n^{2}}, \frac{(n+1)}{n^{2}}, \cdots, \frac{\left(n^{2}-1\right)}{n^{2}}, \frac{n^{2}}{n^{2}}\right\}
$$

into one interval of width $\frac{1}{n}$ and $n^{2}-n$ intervals of width $\frac{1}{n^{2}}$.

For $x \geq \frac{1}{n}, f(x)$ is non-zero at precisely n points, so that $\sup _{x \in I_{i}} f(x)$ is nonzero on the left-most interval of width $\frac{1}{n}$ and at most $2 n$ intervals of width $\frac{1}{n^{2}}$. Thus

$$
U\left(f, P_{n}\right) \leq \frac{1}{n}+2 n \frac{1}{n^{2}}=\frac{3}{n}
$$

so that f is Riemann integrable and $\int_{0}^{1} f(x) d x=0$.

