MATH 5105 Differential and Integral Analysis: Exercise Sheet 6

Coursework Exercise

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with bounded derivative. Show that f is uniformly continuous.
- 2. Consider $f(x) = \frac{1}{x^2}$ on $[a, \infty)$ for a > 0. Show that f is uniformly continuous.

Problems

- 3. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x, g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sin(x)$. Prove or disprove the following statements
 - (a) f is uniformly continuous,
 - (b) g is uniformly continuous,
 - (c) fg is uniformly continuous,
 - (d) The function

$$\begin{cases} \frac{g(x)}{f(x)}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

is uniformly continuous.

- 4. Let $f:(0,1)\to\mathbb{R}$ be continuous. Show that
 - (a) f is uniformly continuous if $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$ exists.
 - (b) If f is uniformly continuous then $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$ exists.
- 5. Show that the following functions are uniformly continuous by directly verifying the ε - δ definition
 - (a) $h(x) = \frac{1}{x}$ on $[\frac{1}{2}, \infty)$,
 - (b) $h(x) = \frac{x}{x+1}$ on [0, 2].

- 6. Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable and $c\in\mathbb{R}.$
 - (a) Given a partition P of [a, b], show that

$$U(cf, P) - L(cf, P) \le |c|(U(f, P) - L(f, P)).$$

(b) Show that cf is integrable and that

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

7. Let $\alpha \in \mathbb{R}$ and $f:[0,1] \to \mathbb{R}$ be given by

$$f(x) = \left\{ \begin{array}{ll} x^{\alpha}, & x \in \left\{ \frac{1}{k} \mid k \in \mathbb{N} \right\}, \\ 0, & \text{otherwise.} \end{array} \right.$$

For which values of α is f Riemann integrable? If f is Riemann integrable what is the value of $\int_0^1 f(x) dx$?