
MATH 5105 Differential and Integral Analysis

Exercise Sheet 5

Classwork Exercise

1. If P is a partition and P ′ ⊃ P is a refinement then we have

U(f, P ′) ≤ U(f, P ).

Proof. Let P = {x0, x1, . . . , xn} and P ′ = {x0, x1, x2, x3, . . . , xj−1, γ, xj , . . . , xn}.
Then we compute

U(f, P ) =
n∑
i=1

sup
[xi−1,xi]

f(x)(xi − xi−1)

=
n∑

i=1,i 6=j
sup

[xi−1,xi]
f(x)(xi − xi−1) + sup

[xj−1,xj ]
f(x)(xj − xj−1)

≥
n∑

i=1,i 6=j
sup

[xi−1,xi]
f(x)(xi − xi−1) + sup

[xj−1,γ]
f(x)(γ − xj−1) + sup

[γ,xj ]
f(x)(xj − γ)

= U(f, P ′).

Now if P ′ differs from P by m points, repeat the above argument m times.

Problems Exercise

2. Let f(x) = exp(
√
x), g(x) = sin(πx) and P = {0, 1, 4, 9}.

(a) Find the upper and lower sums U(f, P ) and L(f, P ) of f for the partition P .
Use these sums to give bounds for

∫ 9
0 f(x)dx.

Proof. Recall that Ii = [xi−1, xi],4xi = xi−xi−1, and thatMi = supx∈Ii f(x),mi =
infx∈Ii f(x). We have

I1 = [0, 1], 41 = 1, M1 = exp(1), m1 = exp(0),
I2 = [1, 4], 42 = 3, M2 = exp(2), m2 = exp(1),
I3 = [4, 9], 43 = 5, M3 = exp(3), m2 = exp(2).
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Therefore

U(f, P ) =

3∑
i=1

Mi4xi = 1 exp(1) + 3 exp(2) + 5 exp(3),

L(f, P ) =
3∑
i=1

mi4xi = 1 exp(0) + 2 exp(1) + 5 exp(2).

Hence we have

1 + 3e+ 5e2 ≤
∫ 9

0
f(x)dx ≤ e+ 3e2 + 5e3.

(In fact the integral evaluates to 2 + 4e3 ' 82.3, while the lower and upper
sums are approximately 46.1 and 125.3. )

(b) Find the upper and lower sums U(g, P ) and L(g, P ) of f for the partition P .
Use these sums to give bounds for

∫ 9
0 g(x)dx.

Proof.

M1 = 1,m1 = 0,M2 = 1,m2 = −1,M3 = 1,m3 = −1.

Therefore

U(f, P ) = 1 · 1 + 3 · 1 + 5 · 1, L(g, P ) = 1 · 0 + 3 · (−1) + 5 · (−1).

Hence we have

−8 ≤
∫ 9

0
g(x)dx ≤ 9.

Extra Exercises

3. Suppose that f : R→ R is defined by

f(x) =

{
0, x 6= 0,
1, x = 0.

(a) Given a partition P of [−1, 1], what is L(f, P )? What is
∫ 1

−1
f(x)dx?

Proof. Given a partition P of [−1, 1], the function f has infimum 0 in any
subinterval. Therefore L(f, P ) = 0 for any partition of P . Hence∫ 1

−1
f(x)dx = 0.
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(b) For a fixed ε > 0, find a partition P of [−1, 1] such that U(f, P ) < ε. Compute∫ 1

−1f(x)dx.

Proof. For 0 < δ < 1 choose P = {−1,−δ, δ, 1}. On the intervals [−1,−δ]
and [δ, 1] the function f has maximum value 0. On the interval [−δ, δ], it has
maximum value 1. Therefore

U(f, P ) = ((−δ)− (−1)) · 0 + (δ − (−δ)) · 1 + (1− δ) · 0 = 2δ,

and we choose δ < ε
2 =⇒ U(f, P ) < ε.

Hence
∫ 1

−1f(x)dx ≤ 0. Together with the previous estimate we have

0 =

∫ 1

−1
f(x)dx ≤

∫ 1

−1
f(x)dx ≤ 0.

so that ∫ 1

−1
f(x) = 0

(c) Is f integrable on[−1, 1]? If so compute its integral.

Proof. As ∫ 1

−1
f(x)dx =

∫ 1

−1
f(x)dx = 0,

this implies that f is integrable and
∫ 1
−1 f(x)dx = 0.

4. Let f : R→ R be defined by f(x) = x2. Consider the equidistant partitions Pn on
[0, 1] into n subintervals.

Proof. We have

Pn = {0/n, 1/n, · · · , n/n},

or x1 = i/n for i = 0, c . . . , n. Thus Ii = [(i− 1)/n, i/n] and 4xi = 1/n.

(a) Find U(f, Pn). What can you say about
∫ 1

0f(x)dx?
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Proof. We have Mi =
(
i
n

)2
and thus

U(f, P ) =
n∑
i=1

Mi4xi =
n∑
i=1

(
i

n

)2( 1

n

)

=
1

n3

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6n3
=

1

3
+

1

2n
+

1

6n2
.

Hence we have ∫ 1

0
f(x)dx ≤ 1

3
.

(b) Find L(f, Pn). What can you say about
∫ 1

0
f(x)dx?

Proof. Similarly we have mi =
(
i−1
n

)2
and thus

L(f, P ) =
n∑
i=1

mi4xi =
n∑
i=1

(
i− 1

n

)2( 1

n

)

=
1

n3

n∑
i=1

(i− 1)2 =
(n− 1)n(2n− 1)

6n3
=

1

3
− 1

2n
+

1

6n2
.

Hence ∫ 1

0
f(x)dx ≥ 1

3
.

(c) Is f integrable on [0, 1]? If so, what is its integral?

Proof. Combining the two estimates above we see that
∫ 1
0 x

2dx exists and∫ 1

0
x2dx =

1

3
.

[You may use the formula
∑n

k=1 k
2 = 1

6n(n+ 1)(2n+ 1).]

5. Let f : R→ R be given by

f(x) =

{ 1
q , x = p

q ,∈ Q where p, q are coprime and q > 0,

0, x 6∈ Q.
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(a) Prove that f is Riemann integrable on [0, 1],

Proof. Clearly for any partition P of [0, 1] we have that mi = 0 for each i as
the irrationals are dense in [0, 1]. Thus L(f, P ) = 0

If we can show for any ε > 0 we have that U(f, P ) < ε, then it follows
that U(f, P ) − L(f, P ) < ε and by Riemann’s condition that f is Riemann
integrable. The key for estimating the upper sum is to observe that there
are actually very few points at which f(x) is not small. More precisely, given
ε′ > 0, there are only finitely many points x ∈ [0, 1] such that f(x) ≥ ε′ (only
those rational numbers with denominator not exceeding 1

ε′ , that is

N + 1 = |{x ∈ [0, 1] | f(x) > ε′}|

is finite. Let’s call these points y0 < y1 < · · · < yN . We now choose a
partition

P = {x0, x1, x2, · · · , x2N+1}

such that

x0 = y0 < x1 < x2 < y1 < x3 < x4 < y2 < x5 < x6 < y3 < · · · < x2N < yN = x2N+1,

such that42j+1 = x2j+1−x2j < ε′

N+1 for j = 0, · · · , N . Then we can estimate
M2j+1 ≤ 1 for j = 0, · · · , N and M2j < ε′ for j = 1, · · · < N . Splitting the
upper sum U(f, P ) into even and odd parts, we estimate

U(f, P ) =

2N+1∑
i=1

Mi4i =

N∑
j=0

M2j+142j+1 +

N∑
kj=1

M2j42j

<

N∑
j=0

1 · · ·42j+1 +

N∑
j=1

ε′42j <
(N + 1)ε′

(N + 1)
+ ε′ · 1 = 2ε′.

Thus by choosing ε′ = ε
2 for a given ε > 0, U(f, P ) < ε.

(b) Show that
∫ 1
0 f(x)dx = 0,

Proof. As U(f, P )−L(f, P ) < ε for all ε > 0 it follows that
∫ 1
0 f(x)dx = 0.

(c) Show that f is discontinuous at x ∈ Q and continuous if x 6∈ Q.

Proof. Let x0 = p/q be an arbitrary rational number with p ∈ Z, q ∈ N such
that p and q are coprime. This shows that f(x0) = 1

q . Letα ∈ R\Q be any
irrational number and define xn = x0 + α

n for all n ∈ N. All these points xn
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are irrational and hence we have that f(xn) = 0 for all n ∈ N. This implies
that

|xn − x0| =
α

n
& |f(x0)− f(xn)| = 1

q
.

Let ε = 1
q and given δ > 0let n = 1 + dαδ e. For the corresponding xn, we have

|f(x0)− f(xn) =
1

q
≥ ε

and

|x0 − xn| =
α

n
=

α

1 + dαδ e
<

α

dαδ e
≤ δ

which shows that f is discontinuous at x0.

(d) Show that f is nowhere differentiable.

Proof. At a rational number, this follows since f is discontinuous are rational
numbers.

For an irrational number let{an} be any sequence of irrational numbers. The
sequence f(an) is identically equal to 0 and hence∣∣∣∣ lim

n→∞

f(an)− f(x0)

an − x0

∣∣∣∣ = 0.

Furthermore since the rationals are dense in R, it follows that there exists a
sequence of rational numbers {bn} =

{
kn
n

}
converging to x0 with kn ∈ Z and

b ∈ N coprime and ∣∣∣∣knn − x0
∣∣∣∣ < 1√

5n2
.

Thus for all n we have∣∣∣∣f(bn)− f(x0)

bn − x0

∣∣∣∣ > 1/n− 0

1/(
√

5n2)
=
√

5n 6= 0

and hence f is not differentiable at any irrational x0.

6. Consider f(x) = 1
1+x on the interval [0, 1]. For each n ∈ N, define

Pn =

{
0,

1

n
,

2

n
, · · · , n− 1

n
, 1

}
.

Calculate L(f, Pn) and U(f, Pn) and deduce that f is Riemann integrable on [0, 1].
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Proof. We have that xk = k
n so that 4xk = 1

n . As f is decreasing mk = 1
1+xk

and

Mk = 1
1+xk−1

. Therefore

L(f, Pn) =
1

n

n∑
k=1

1

1 + k/n
=

n∑
k=1

1

n+ k

and

U(f, Pn) =
1

n

n∑
k=1

1

1 + (k − 1)/n
=

n−1∑
k=0

1

n+ k
.

Hence

U(f, Pn)− L(f, Pn) =
1

(n+ 0)
− 1

(n+ n)
=

1

2n
.

So given any ε > 0, if n > 1
2ε then U(f, Pn) − L(f, Pn) = 1

2n < ε. Thus by Riemann’s
condition f is Riemann integrable on [0, 1].
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