MATH 5105 Differential and Integral Analysis : Exercise Sheet 4

Classroom Exercise

1. Let the function $f:(0, \pi) \rightarrow \mathbb{R}$ be given by $f(x)=\cos (x)$.
(a) Show that f is invertible and show that the inverse $g(y)=f^{-1}(y)$ is differentiable.

Proof. The image $f((0, \pi))$ is the interval $(-1,1)$ so $f=g^{-1}$ is defined on this set. As $f^{\prime}(x)=-\sin (x)<0$ for $x \in(0, \pi), f$ is strictly decreasing and hence by the inverse function theorem, invertible with differentiable inverse $g:(-1,1) \rightarrow \mathbb{R}$.
(b) Find the derivative $g^{\prime}(y)$.

Proof. The derivative is given by

$$
g^{\prime}(x)=\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

and note that

$$
f^{\prime}(x)=-\sin (x)=-\sqrt{1-\cos ^{2}(x)}
$$

so that

$$
g^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} .
$$

(c) Compute the Taylor polynomial $T_{1,0}(y)$ about zero of degree one for g and the remainder term in Lagrangian form.

Proof. We have $g(0)=\frac{\pi}{2} \cdot g^{\prime}(0)=-1$ so that $T_{1,0}(x)=\frac{\pi}{2}-x$. From $g^{\prime \prime}(x)=$ $-x\left(1-x^{2}\right)^{-3 / 2}$ the remainder term in Lagrange form is given by

$$
R=\frac{1}{2} g^{\prime \prime}(c) x^{2}=-\frac{c x^{2}}{2\left(1-c^{2}\right)^{3 / 2}}
$$

(d) Show that for $|y| \leq \frac{1}{2}$,

$$
\left|g(y)-\frac{\pi}{2}+y\right| \leq \frac{\sqrt{3}}{18}
$$

Proof. By Taylor's Theorem, there exists an $c \in[0, x]$ such that $g(x)=$ $T_{1,0}(x)=\mathbb{R}$. For $x \leq \frac{1}{2}$ we get the explicit estimate

$$
\begin{aligned}
\left|g(x)-\frac{\pi}{2}+x\right| & =\mid g(x)-T_{1,0}(x) \\
& =|R| \leq \frac{\mid x^{3}}{2\left(1-x^{2}\right)^{3 / 2}} \leq \frac{(1 / 2)^{2}}{2-(1-(1 / 4))^{3 / 2}}=\frac{1}{6 \sqrt{3}}=\frac{\sqrt{4} 3}{18}
\end{aligned}
$$

Extra Exercises

2. Suppose that the function f satisfies

$$
f^{\prime}(x)=K f(x)
$$

then $f(x)=C \exp (\alpha x)$ for some C, α.
Proof. Follow the proof in the lecture notes for $\exp (x) \Longrightarrow$ Show that the solution of the equation above is unique up to constant. Then show that $C \exp (\alpha x)$ satisfies the above equation.
3. Suppose that the function $f(x)$ satisfies the equation

$$
f(x+y)=f(x) f(y)
$$

(a) If f is differentiable then either $f(x)=0$ or $f(x)=e^{a x}$.

Proof. We have that

$$
\left.\frac{d}{d y} f(x+y)\right|_{y=0}=f^{\prime}(x)=f(x) f^{\prime}(0)
$$

Therefore

$$
f(x)=C e^{\alpha x}
$$

where $C=f(0)$. Substituting this back into the functional equation for f we find that $C^{2}=C$ and hence either $C=0$ or $C=1$.
(b*) (hard) If f is continuous then either $f(x) \equiv 0$ or $f(x)=e^{a x}$.
4. Find the $2 n$-th derivative of $g(x)=x^{2} \sin (x)$ and $h(x)=x^{2} \cos (x)$.

Proof.

$$
g^{(2 n)}(x)=(-1)^{n-1}\left[\left(2 n^{2}-2 n-x^{2}\right) \sin (x)+4 n x \cos (x)\right]
$$

5. Show that the Taylor series of a polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

is precisely that polynomial.
Proof.

$$
f^{(k)}(0)=k!a_{k}
$$

if $0 \leq k \leq n$ and 0 otherwise.
6. Let $f(x)$ have continuous derivative in the interval $[a, b]$ and suppose that $f^{\prime \prime}(x) \geq 0$ for every value of x. Then if ξ is any point in the interval, the curve nowhere falls below its tangent at the point $x=\xi, y=f(\xi)$.

Proof. The equation of the tangent is given by

$$
y(x)=f(\xi)+f^{\prime}(\xi)(x-\xi)
$$

By Taylor's theorem, for some η between ξ and x we get that

$$
f(x)-y(x)=f(x)-\left(f(\xi)+f^{\prime}(\xi)(x-\xi)\right)=\frac{1}{2} f^{\prime \prime}(\eta)(x-\xi)^{2} \geq 0
$$

7. (a) Expand $(1+x)^{1 / 2}$ to two terms about $x=0$ and estimate the remainder.

Proof.

$$
T_{1}(x ; 0)=1+\frac{1}{2} x
$$

and the remainder is given by

$$
R_{2}(x ; 0)=-\frac{1}{16} \frac{x^{2}}{(1+\xi)^{3 / 2}}
$$

for some ξ between 0 and x.
(b) Find the best quadratic approximation to $(1+x)^{1 / 3}$ in a neighbourhood of 0 . Proof.

$$
1+\frac{1}{3} x-\frac{1}{9} x^{2}
$$

(c) Find the best quadratic approximation to $(1+x)^{1 / n}$ in a neighbourhood of 0 . Proof.

$$
1+\frac{x}{n}+\frac{1}{2 n}\left(\frac{1}{n}-1\right) x^{2} .
$$

8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable and let $M_{i}=\sup _{x \in \mathbb{R}}\left|f^{(i)}(x)\right|$ for $i=0,1,2$. Show that

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

Proof. We apply Taylor's theorem to $f(x)$ about a. That is we get

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(c)}{2!}(x-a)^{2}
$$

where c lies between a and x. If we let $x=a+h$ we get

$$
f(a+h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}\left(c_{1}\right)}{2!} h^{2} .
$$

If we replace $a+h$ with $a-h$ we get

$$
f(a-h)=f(a)-f^{\prime}(a) h+\frac{f^{\prime \prime}\left(c_{2}\right)}{2!} h^{2} .
$$

Subtracting the two, we get

$$
f^{\prime}(a)=\frac{f(a-h)-f(a+h)}{2 h}+\frac{\left(f^{\prime \prime}\left(c_{1}\right)-f^{\prime \prime}\left(c_{2}\right)\right) h}{2 \cdot 2!}
$$

Hence for any a we have

$$
M_{1} \leq \frac{M_{0}}{h}+\frac{M_{2}}{2} h
$$

This is true for any value of h in particular it is true of $h=\sqrt{\frac{2 M_{0}}{M_{2}}}$.
9. Find the first six terms of the Taylor series for y in powers of x of the following implicitly defined functions
(a) $x^{2}+y^{2}=y, y(0)=0$,

Proof.

$$
T_{6} y(x)=x^{2}+x^{4}+2 x^{6}+\ldots
$$

(b) $x^{2}+y^{2}=y, y(0)=1$,

Proof.

$$
T_{6} y(x)=1-x^{2}-x^{4}-2 x^{6} \ldots
$$

(c) $x^{3}+y^{3}=0, y(0)=1$.

Proof.

$$
T_{6} y(x)=x^{3}+x^{9}+\ldots
$$

10. Let $f:(-1, \infty) \rightarrow \mathbb{R}, f(x)=\sin (\pi(\sqrt{1+x})$.
(a) Show that

$$
4(1+x) f^{\prime \prime}(x)+2 f^{\prime}(x)+\pi^{2} f(x)=0
$$

Proof. Computation
(b) Show that for all $n \in \mathbb{N}$

$$
4 f^{(n+1)}(0)+2(2 n+1) f^{(n+1)}(0)+\pi^{2} f^{(n)}(0)=0
$$

Proof. Use induction.
(c) Find the Taylor polynomial $T_{4,0}(x)$ for $\sin (\sqrt{1+x})$.
11. Note that we have shown that

$$
e=\exp (1)=\sum_{k=1}^{\infty} \frac{1}{k!} .
$$

Show that the remainder r_{n} in

$$
n!e=n!\sum_{k=1}^{n} \frac{1}{k!}+r_{n}
$$

cannot be an integer and hence e is irrational.
Proof. We find that

$$
r_{n}=\sum_{k=n+1}^{\infty} \frac{n!}{k!} .
$$

We estimate each term as

$$
0<\frac{n!}{k!}=\frac{1}{(n+1)(n+2) \cdots k}<\frac{1}{(n+1)^{k-n}}
$$

so that

$$
0<r_{n}<\sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-n}}=\sum_{l=1}^{\infty} \frac{1}{(n+1)^{l}}=\frac{1}{n} .
$$

Hence $0<r_{n}<\frac{1}{n}<1$ and hence r_{n} cannot be an integer.

