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Sheet 4

Classroom Exercise

1. Let the function f : (0,7) — R be given by f(z) = cos(z).

(a)

Show that f is invertible and show that the inverse g(y) = f~!(y) is differen-
tiable.

Proof. The image f((0,7)) is the interval (—1,1) so f = g~! is defined on
this set. As f'(z) = —sin(z) < 0 for z € (0,7), f is strictly decreasing and
hence by the inverse function theorem, invertible with differentiable inverse
g:(=1,1) = R.

O]
Find the derivative ¢'(y).
Proof. The derivative is given by
9@ = (FY @) = 5
f'(f= =)
and note that
F(@) = —sin(x) = —/1 = cos?(z)
so that
g'(x) = —\/11_7-
O]

Compute the Taylor polynomial T} o(y) about zero of degree one for g and
the remainder term in Lagrangian form.



Proof. We have g(0) = .¢'(0) = —1 so that Ty g(z) = § — z. From ¢"(z) =
—z(1 — 22)73/2 the remainder term in Lagrange form is given by

_ L, 2 _ ca?
R = 39 (c)z® = AR
U
(d) Show that for |y| < 1,
™ V3
- < X2
l9(y) = 5 +ul = 35
Proof. By Taylor’s Theorem, there exists an ¢ € [0,z] such that g(z) =
Tio(z) = R. For z < 1 we get the explicit estimate
v
l9(x) — 5T x| = |g(x) — Tio(x)
3 2
_ IR < K < (1/2) _ 1 V43
2(1 —22)3/2 = 2 — (1 —(1/4))3/2  6v3 18
O

Extra Exercises

2. Suppose that the function f satisfies

f'(x) = Kf(z)

then f(x) = Cexp(azx) for some C, .

Proof. Follow the proof in the lecture notes for exp(z) = Show that the solution
of the equation above is unique up to constant. Then show that C exp(ax) satisfies
the above equation. O

3. Suppose that the function f(z) satisfies the equation
fl@+y) = f(@)f(y)
(a) If f is differentiable then either f(xz) =0 or f(z) = e®*.

Proof. We have that



7.

Therefore
fl@) = Ceo

where C' = f(0). Substituting this back into the functional equation for f we
find that C? = C and hence either C =0 or C' = 1. O

(b*) (hard) If f is continuous then either f(xz) =0 or f(x) = e*.

. Find the 2n-th derivative of g(x) = 22 sin(x) and h(z) = 22 cos(x).

Proof.

g% (z) = (=1)""1(2n? — 2n — 2?) sin(z) + 4nz cos(z)]

O
. Show that the Taylor series of a polynomial
f(z) = ag + a1 + asx® + - - + a "
is precisely that polynomial.
Proof.
F#(0) = klay
if 0 < k <n and 0 otherwise. O

. Let f(z) have continuous derivative in the interval [a, b] and suppose that f”(z) > 0

for every value of x. Then if £ is any point in the interval, the curve nowhere falls
below its tangent at the point x = £,y = f(§).

Proof. The equation of the tangent is given by

y(@) =&+ ()-8

By Taylor’s theorem, for some 1 between £ and x we get that

fl@) —y(x) = f(@) = (f() + Oz —¢) = %f”(n)(w —&? 20

(a) Expand (1 + z)Y/2 to two terms about x = 0 and estimate the remainder.



Proof.

1
T1<.ZL‘;0) =1+ 5.%‘
and the remainder is given by
1 x?
Ry(2;0) = ————F77>5
2(1'7 ) 16 (1 + 5)3/2
for some & between 0 and x. O
(b) Find the best quadratic approximation to (14 z)/3 in a neighbourhood of 0.
Proof.
1 1
1 + gﬂf — §CL’2

O]

1/n

(c) Find the best quadratic approximation to (1+x)*/" in a neighbourhood of 0.

Proof.

O]

8. Let f: R — R be twice differentiable and let M; = sup,cg | £ (z)| for i = 0,1, 2.
Show that

M? < AMyMs.

Proof. We apply Taylor’s theorem to f(x) about a. That is we get

Fla) = fla) + F@)a - )+ LD (e - ap

where c lies between a and z. If we let x = a + h we get

fla+h) = f(a)+ f'(a)h + f";cl) K2
If we replace a + h with a — h we get
fla—m) = f@) - Flan+ 22



Subtracting the two, we get
fla=h) = fla+h)  (f"(c1) = f"(c2))h

1
fla) = 2h * 2.2l
Hence for any a we have
My = M,
M, < — + —=h
ST
This is true for any value of h in particular it is true of h = 1/2]\/[%. O

9. Find the first six terms of the Taylor series for y in powers of = of the following
implicitly defined functions

(a) z*+y* =y,y(0) =0,
Proof.

Toy(x) = 2% +a* +22° + ...

O
(b) 2* +y* = y,y(0) = 1,
Proof.
Tey(z) =1 — 22 — 2t — 225, ..
O
(¢) 22+ y>=0,y(0) = 1.
Proof.
Toy(z) = 2%+ 2%+ ...
O
10. Let f:(—1,00) = R, f(x) = sin(n(v/1 + z).
(a) Show that
41 + z) f"(z) + 2f'(z) + 72 f(z) = 0.
Proof. Computation O

(b) Show that for all n € N

4f(n+1)(0) + 2<2n + 1>f(n+1)(()) + 7r2f(n) (O) = 0.



11.

Proof. Use induction.
(c) Find the Taylor polynomial Ty ¢(z) for sin(v/1 + z).

Note that we have shown that

1
e=-exp(l) = ZE
k=1

Show that the remainder r, in

—~ 1
n!e:nlzy—i—rn
k=1""

cannot be an integer and hence e is irrational.

Proof. We find that

0< — = <
K (n+1)(n+2)---k  (n+1)km
so that
o0
0<r, < Z
k= n+1 (n+1 =1 (n+1

Hence 0 < r,, < % < 1 and hence r, cannot be an integer.



