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Classroom Exercise

1. Let the function f : (0, π)→ R be given by f(x) = cos(x).

(a) Show that f is invertible and show that the inverse g(y) = f−1(y) is differen-
tiable.

Proof. The image f((0, π)) is the interval (−1, 1) so f = g−1 is defined on
this set. As f ′(x) = − sin(x) < 0 for x ∈ (0, π), f is strictly decreasing and
hence by the inverse function theorem, invertible with differentiable inverse
g : (−1, 1)→ R.

(b) Find the derivative g′(y).

Proof. The derivative is given by

g′(x) = (f−1)′(x) =
1

f ′(f−1(x))

and note that

f ′(x) = − sin(x) = −
√

1− cos2(x)

so that

g′(x) = − 1√
1− x2

.

(c) Compute the Taylor polynomial T1,0(y) about zero of degree one for g and
the remainder term in Lagrangian form.
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Proof. We have g(0) = π
2 .g
′(0) = −1 so that T1,0(x) = π

2 − x. From g′′(x) =

−x(1− x2)−3/2 the remainder term in Lagrange form is given by

R =
1

2
g′′(c)x2 = − cx2

2(1− c2)3/2
.

(d) Show that for |y| ≤ 1
2 ,

|g(y)− π

2
+ y| ≤

√
3

18
.

Proof. By Taylor’s Theorem, there exists an c ∈ [0, x] such that g(x) =
T1,0(x) = R. For x ≤ 1

2 we get the explicit estimate

|g(x)− π

2
+ x| = |g(x)− T1,0(x)

= |R| ≤ |x3

2(1− x2)3/2
≤ (1/2)2

2− (1− (1/4))3/2
=

1

6
√

3
=

√
43

18

Extra Exercises

2. Suppose that the function f satisfies

f ′(x) = Kf(x)

then f(x) = C exp(αx) for some C,α.

Proof. Follow the proof in the lecture notes for exp(x) =⇒ Show that the solution
of the equation above is unique up to constant. Then show that C exp(αx) satisfies
the above equation.

3. Suppose that the function f(x) satisfies the equation

f(x+ y) = f(x)f(y).

(a) If f is differentiable then either f(x) = 0 or f(x) = eax.

Proof. We have that

d

dy
f(x+ y)

∣∣∣∣
y=0

= f ′(x) = f(x)f ′(0)
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Therefore

f(x) = Ceαx

where C = f(0). Substituting this back into the functional equation for f we
find that C2 = C and hence either C = 0 or C = 1.

(b*) (hard) If f is continuous then either f(x) ≡ 0 or f(x) = eax.

4. Find the 2n-th derivative of g(x) = x2 sin(x) and h(x) = x2 cos(x).

Proof.

g(2n)(x) = (−1)n−1[(2n2 − 2n− x2) sin(x) + 4nx cos(x)]

5. Show that the Taylor series of a polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is precisely that polynomial.

Proof.

f (k)(0) = k!ak

if 0 ≤ k ≤ n and 0 otherwise.

6. Let f(x) have continuous derivative in the interval [a, b] and suppose that f ′′(x) ≥ 0
for every value of x. Then if ξ is any point in the interval, the curve nowhere falls
below its tangent at the point x = ξ, y = f(ξ).

Proof. The equation of the tangent is given by

y(x) = f(ξ) + f ′(ξ)(x− ξ)

By Taylor’s theorem, for some η between ξ and x we get that

f(x)− y(x) = f(x)− (f(ξ) + f ′(ξ)(x− ξ)) =
1

2
f ′′(η)(x− ξ)2 ≥ 0.

7. (a) Expand (1 + x)1/2 to two terms about x = 0 and estimate the remainder.
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Proof.

T1(x; 0) = 1 +
1

2
x

and the remainder is given by

R2(x; 0) = − 1

16

x2

(1 + ξ)3/2

for some ξ between 0 and x.

(b) Find the best quadratic approximation to (1 +x)1/3 in a neighbourhood of 0.

Proof.

1 +
1

3
x− 1

9
x2

(c) Find the best quadratic approximation to (1 +x)1/n in a neighbourhood of 0.

Proof.

1 +
x

n
+

1

2n

(
1

n
− 1

)
x2.

8. Let f : R → R be twice differentiable and let Mi = supx∈R |f (i)(x)| for i = 0, 1, 2.
Show that

M2
1 ≤ 4M0M2.

Proof. We apply Taylor’s theorem to f(x) about a. That is we get

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2!
(x− a)2

where c lies between a and x. If we let x = a+ h we get

f(a+ h) = f(a) + f ′(a)h+
f ′′(c1)

2!
h2.

If we replace a+ h with a− h we get

f(a− h) = f(a)− f ′(a)h+
f ′′(c2)

2!
h2.
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Subtracting the two, we get

f ′(a) =
f(a− h)− f(a+ h)

2h
+

(f ′′(c1)− f ′′(c2))h
2 · 2!

Hence for any a we have

M1 ≤
M0

h
+
M2

2
h

This is true for any value of h in particular it is true of h =
√

2M0
M2

.

9. Find the first six terms of the Taylor series for y in powers of x of the following
implicitly defined functions

(a) x2 + y2 = y, y(0) = 0,

Proof.

T6y(x) = x2 + x4 + 2x6 + . . .

(b) x2 + y2 = y, y(0) = 1,

Proof.

T6y(x) = 1− x2 − x4 − 2x6 . . .

(c) x3 + y3 = 0, y(0) = 1.

Proof.

T6y(x) = x3 + x9 + . . .

10. Let f : (−1,∞)→ R, f(x) = sin(π(
√

1 + x).

(a) Show that

4(1 + x)f ′′(x) + 2f ′(x) + π2f(x) = 0.

Proof. Computation

(b) Show that for all n ∈ N

4f (n+1)(0) + 2(2n+ 1)f (n+1)(0) + π2f (n)(0) = 0.
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Proof. Use induction.

(c) Find the Taylor polynomial T4,0(x) for sin(
√

1 + x).

11. Note that we have shown that

e = exp(1) =
∞∑
k=1

1

k!
.

Show that the remainder rn in

n!e = n!

n∑
k=1

1

k!
+ rn

cannot be an integer and hence e is irrational.

Proof. We find that

rn =

∞∑
k=n+1

n!

k!
.

We estimate each term as

0 <
n!

k!
=

1

(n+ 1)(n+ 2) · · · k
<

1

(n+ 1)k−n

so that

0 < rn <
∞∑

k=n+1

1

(n+ 1)k−n
=
∞∑
l=1

1

(n+ 1)l
=

1

n
.

Hence 0 < rn <
1
n < 1 and hence rn cannot be an integer.
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