MATH 5105 Differential and Integral Analysis: Exercise Sheet 4

Class work Exercises

1. Let the function $f:(0, \pi) \rightarrow \mathbb{R}$ be given by $f(x)=\cos (x)$.
(a) Show that f is invertible.
(b) Show that the inverse $g(y)=f^{-1}(y)$ is differentiable.
(c) Find the derivative $g^{\prime}(y)$.
(d) Compute the Taylor polynomial $T_{1,0}(y)$ about zero of degree one for g and the remainder term in Lagrangian form.
(e) Show that for $|y| \leq \frac{1}{2}$,

$$
\left|g(y)-\frac{\pi}{2}+y\right| \leq \frac{\sqrt{3}}{18}
$$

Problems

2. Suppose that the function f satisfies

$$
f^{\prime}(x)=K f(x)
$$

then $f(x)=C \exp (\alpha x)$ for some α, C.
3. Suppose that the function $f(x)$ satisfies the equation

$$
f(x+y)=f(x) f(y) .
$$

(a) If f is differentiable then either $f(x)=0$ or $f(x)=e^{a x}$.
(b*) (hard) If f is continuous then either $f(x) \equiv 0$ or $f(x)=e^{a x}$.
4. Show that the Taylor series of a polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

is precisely that polynomial.
5. Let $f(x)$ have continuous derivative in the interval $[a, b]$ and suppose that $f^{\prime \prime}(x) \geq 0$ for every value of x. Then if ξ is any point in the interval, the curve nowhere falls below its tangent at the point $x=\xi, y=f(\xi)$.
6. (a) Expand $(1+x)^{1 / 2}$ to two terms about $x=0$ and estimate the remainder.
(b) Find the best linear approximation to $(1+x)^{1 / 3}$ in a neighbourhood of 0 .
(c) Find the best quadratic approximation to $(1+x)^{1 / n}$ in a neighbourhood of 0 .
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable and let $M_{i}=\sup _{x \in \mathbb{R}}\left|f^{(i)}(x)\right|$ for $i=0,1,2$. Show that

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

8. Find the first six terms of the Taylor series for y in powers of x of the following implicitly defined functions
(a) $x^{2}+y^{2}=y, y(0)=0$,
(b) $x^{2}+y^{2}=y, y(0)=1$,
(c) $x^{3}+y^{3}=0, y(0)=1$.
9. Note that we have shown that

$$
e=\exp (1)=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

Show that the remainder R_{n} in the form

$$
n!e=n!\sum_{k=0}^{n} \frac{1}{k!}+R_{n}
$$

cannot be an integer and hence e is irrational.

