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Coursework Exercises

1. Assume that f is continuous on [a, b] and differentiable on (a, b).

(a) If f ′ ≤ 0 then f is non-increasing (monotone decreasing),

Proof. Let x, y ∈ [a, b] such that x < y. We want to show f(x) ≥ f(y). We
apply the mean value theorem on [x, y],

f(y)− f(x) = f ′(ξ)(y − x) ≤ 0

so f(y) ≤ f(x).

(b) If f ′ > 0 then f is strictly increasing,

Proof. Let x, y ∈ [a, b] such that x < y. We want to show f(x) < f(y). We
apply the mean value theorem on [x, y],

f(y)− f(x) = f ′(ξ)(y − x) > 0

so f(y) > f(x).

(c) If f ′ < 0 then f is strictly decreasing.

Proof. Let x, y ∈ [a, b] such that x < y. We want to show f(x) > f(y). We
apply the mean value theorem on [x, y],

f(y)− f(x) = f ′(ξ)(y − x) < 0

so f(y) < f(x).
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Problem

2. Let g = arctan be the inverse of the function f(x) = tan(x), x ∈
(
−π

2 ,
π
2

)
. Applying

the inverse function theorem for one variable, find a formula for the derivative g′(y)
in terms of y.

Proof. As f(x) = tan(x), x ∈
(
−π

2 ,
π
2

)
= I and f(I) = (−∞,+∞) = R . We define

the inverse as g(y) = arctan(y), g : R→
(
−π

2 ,
π
2

)
. Note that f ′(x) = sec2(x) > 0 so

f is differentiable and strictly increasing. Applying the inverse function theorem
we get for y = f(x)

g′(y) =
1

f ′(x)
=

1

sec2(x)
.

Now we have the identity cos2(x) + sin2(x) = 1, dividing through by cos2(x) 6= 0
as x ∈

(
−π

2 ,
π
2

)
, we get

tan2(x) + 1 = sec2(x).

Therefore

g′(y) =
1

1 + sec2(x)
=

1

1 + y2
.

3. (a) Find a bijective, continuously differentiable function f : R→ R with f ′(0) = 0
and a continuous inverse.

Proof. We take f : R→ R given by f(x) = x3 . Now f is differentiable with
a continuous derivative f ′(x) = 3x2 with f ′(0) = 0. The inverse is given by

f−1(x) = x1/3.

As f is strictly increasing on R f is bijective and f(R) = R implies f is
surjective and hence f is bijective.

As f is differentiable, it is continuous therefore f−1 is also continuous.

(b) Let f : R+
0 → R be differentiable and decreasing. Prove or disprove : if

limx→0 f(x) = 0 then limx→0 f
′(x) = 0.

Proof. Let f : R → R be given by f(x) = −x. Then f is differentiable and
f ′(x) = −1 for all x and limx→0 f(x) = 0 but limx→0 f

′(x) = −1.

4. Using the Intermediate Value Theorem, prove that a continuous function maps
intervals to intervals.
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Proof. We use the following characterisation of an interval: I ⊆ R is an interval if
and only if for all x1, x2 ∈ I with x1 < x2 we get

x1 < c < x2 =⇒ c ∈ I.

Let J = f(I) with y1 < y2. Then we need to show that J is an interval i.e. that
for all y1, y2 ∈ J with y1 < y2 then y1 < c < y2 =⇒ c ∈ J .

To this end, let us consider y1 < y2. Then there exists x1 < x2 ∈ I such that
y1 = f(x1), y2 = f(y2). As y1 6= y2 it follows that x1 6= x2 so that either x1 < x2
or x2 > x1. WLOG consider the case x1 < x2. By assumption f is a continuous
function on I, so it is a continuous function on [x1, x2].

Hence by the intermediate value theorem, for all c with y1 < c < y2 there exists
an a ∈ [x1, x2] such that f(a) = c. This implies that c ∈ J .

5. Show that sin(x) ≤ x for all x ≥ 0.

Proof. Let g(x) = sinx − x. Then g(0) = 0 and g′(x) = cosx − 1. As cos(x) ≤ 1
we see g′(x) ≤ 0 that is g(x) is monotone decreasing. Hence

sinx− x = g(x) ≤ g(0) ≤ 0, ∀x > 0 =⇒ sin(x) ≤ x.

Let f be a differentiable function on R and let

a = sup{|f ′(x)| | x ∈ R} < 1.

Let x0 ∈ R and define recursively sn = f(sn−1), n ≥ 1. Prove that {sn} is conver-
gent sequence and determine its limit.

Proof. Let a = sup{|f ′(x)| | x ∈ R} < 1. By MVT, ∀x ∈ (a, b) =⇒

|f(b)− f(a)| ≤ |f ′(ξ)||b− a|

or

|f(x)− f(y)| ≤ a|x− y|.

Therefore f is a contractive mapping, that is it shrinks the distance between points.
Let sn = f(sn−1), s0 ∈ R. Then we will show that {sn} is a Cauchy sequence.
Consider

|sn+1 − sn| = |f(sn)− f(sn−1)|
≤ a|sn − sn−1|
≤ an|s1 − s0|.
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Let n > m then

|sm − sn| ≤ |sm − sm−1 + sm−1 − sm−2 + · · ·+ sn+1 − sn|
≤ |sm − sm−1|+ |sm−1 − sm−2|+ · · ·+ |sn+1 − sn|
≤ (am−(n+1) + · · ·+ 1)|sn+1 − sn|
an(am−(n+1) + · · ·+ 1)|s1 − s0|

≤ an

1− a
.

Since a < 1, limn→∞
an

1−a = 0, then there exists N |

|sm − sn| < ε, ∀m,n > N.

Therefore {sn} is a Cauchy sequence. As the limit exists, we apply the limit laws
to conclude

s = lim
n→∞

sn = lim
n→∞

f(sn−1) = f
(

lim
n→∞

sn−1

)
= f(s).
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