MATH 5105 Differential and Integral Analysis: Solution Sheet 3

Coursework Exercises

1. Assume that f is continuous on $[a, b]$ and differentiable on (a, b).
(a) If $f^{\prime} \leq 0$ then f is non-increasing (monotone decreasing),

Proof. Let $x, y \in[a, b]$ such that $x<y$. We want to show $f(x) \geq f(y)$. We apply the mean value theorem on $[x, y]$,

$$
f(y)-f(x)=f^{\prime}(\xi)(y-x) \leq 0
$$

so $f(y) \leq f(x)$.
(b) If $f^{\prime}>0$ then f is strictly increasing,

Proof. Let $x, y \in[a, b]$ such that $x<y$. We want to show $f(x)<f(y)$. We apply the mean value theorem on $[x, y]$,

$$
f(y)-f(x)=f^{\prime}(\xi)(y-x)>0
$$

so $f(y)>f(x)$.
(c) If $f^{\prime}<0$ then f is strictly decreasing.

Proof. Let $x, y \in[a, b]$ such that $x<y$. We want to show $f(x)>f(y)$. We apply the mean value theorem on $[x, y]$,

$$
f(y)-f(x)=f^{\prime}(\xi)(y-x)<0
$$

so $f(y)<f(x)$.

Problem

2. Let $g=\arctan$ be the inverse of the function $f(x)=\tan (x), x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Applying the inverse function theorem for one variable, find a formula for the derivative $g^{\prime}(y)$ in terms of y.

Proof. As $f(x)=\tan (x), x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)=I$ and $f(I)=(-\infty,+\infty)=\mathbb{R}$. We define the inverse as $g(y)=\arctan (y), g: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Note that $f^{\prime}(x)=\sec ^{2}(x)>0$ so f is differentiable and strictly increasing. Applying the inverse function theorem we get for $y=f(x)$

$$
g^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{\sec ^{2}(x)} .
$$

Now we have the identity $\cos ^{2}(x)+\sin ^{2}(x)=1$, dividing through by $\cos ^{2}(x) \neq 0$ as $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we get

$$
\tan ^{2}(x)+1=\sec ^{2}(x) .
$$

Therefore

$$
g^{\prime}(y)=\frac{1}{1+\sec ^{2}(x)}=\frac{1}{1+y^{2}} .
$$

3. (a) Find a bijective, continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime}(0)=0$ and a continuous inverse.

Proof. We take $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}$. Now f is differentiable with a continuous derivative $f^{\prime}(x)=3 x^{2}$ with $f^{\prime}(0)=0$. The inverse is given by

$$
f^{-1}(x)=x^{1 / 3} .
$$

As f is strictly increasing on $\mathbb{R} f$ is bijective and $f(\mathbb{R})=\mathbb{R}$ implies f is surjective and hence f is bijective.
As f is differentiable, it is continuous therefore f^{-1} is also continuous.
(b) Let $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ be differentiable and decreasing. Prove or disprove : if $\lim _{x \rightarrow 0} f(x)=0$ then $\lim _{x \rightarrow 0} f^{\prime}(x)=0$.

Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=-x$. Then f is differentiable and $f^{\prime}(x)=-1$ for all x and $\lim _{x \rightarrow 0} f(x)=0$ but $\lim _{x \rightarrow 0} f^{\prime}(x)=-1$.
4. Using the Intermediate Value Theorem, prove that a continuous function maps intervals to intervals.

Proof. We use the following characterisation of an interval: $I \subseteq \mathbb{R}$ is an interval if and only if for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$ we get

$$
x_{1}<c<x_{2} \Longrightarrow c \in I
$$

Let $J=f(I)$ with $y_{1}<y_{2}$. Then we need to show that J is an interval i.e. that for all $y_{1}, y_{2} \in J$ with $y_{1}<y_{2}$ then $y_{1}<c<y_{2} \Longrightarrow c \in J$.

To this end, let us consider $y_{1}<y_{2}$. Then there exists $x_{1}<x_{2} \in I$ such that $y_{1}=f\left(x_{1}\right), y_{2}=f\left(y_{2}\right)$. As $y_{1} \neq y_{2}$ it follows that $x_{1} \neq x_{2}$ so that either $x_{1}<x_{2}$ or $x_{2}>x_{1}$. WLOG consider the case $x_{1}<x_{2}$. By assumption f is a continuous function on I, so it is a continuous function on $\left[x_{1}, x_{2}\right]$.

Hence by the intermediate value theorem, for all c with $y_{1}<c<y_{2}$ there exists an $a \in\left[x_{1}, x_{2}\right]$ such that $f(a)=c$. This implies that $c \in J$.
5. Show that $\sin (x) \leq x$ for all $x \geq 0$.

Proof. Let $g(x)=\sin x-x$. Then $g(0)=0$ and $g^{\prime}(x)=\cos x-1$. As $\cos (x) \leq 1$ we see $g^{\prime}(x) \leq 0$ that is $g(x)$ is monotone decreasing. Hence

$$
\sin x-x=g(x) \leq g(0) \leq 0, \quad \forall x>0 \Longrightarrow \sin (x) \leq x
$$

Let f be a differentiable function on \mathbb{R} and let

$$
a=\sup \left\{\left|f^{\prime}(x)\right| \mid x \in \mathbb{R}\right\}<1
$$

Let $x_{0} \in \mathbb{R}$ and define recursively $s_{n}=f\left(s_{n-1}\right), n \geq 1$. Prove that $\left\{s_{n}\right\}$ is convergent sequence and determine its limit.

Proof. Let $a=\sup \left\{\left|f^{\prime}(x)\right| \mid x \in \mathbb{R}\right\}<1$. By MVT, $\forall x \in(a, b) \Longrightarrow$

$$
|f(b)-f(a)| \leq\left|f^{\prime}(\xi)\right||b-a|
$$

or

$$
|f(x)-f(y)| \leq a|x-y|
$$

Therefore f is a contractive mapping, that is it shrinks the distance between points. Let $s_{n}=f\left(s_{n-1}\right), s_{0} \in \mathbb{R}$. Then we will show that $\left\{s_{n}\right\}$ is a Cauchy sequence. Consider

$$
\begin{aligned}
\left|s_{n+1}-s_{n}\right| & =\left|f\left(s_{n}\right)-f\left(s_{n-1}\right)\right| \\
& \leq a\left|s_{n}-s_{n-1}\right| \\
& \leq a^{n}\left|s_{1}-s_{0}\right|
\end{aligned}
$$

Let $n>m$ then

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & \leq\left|s_{m}-s_{m-1}+s_{m-1}-s_{m-2}+\cdots+s_{n+1}-s_{n}\right| \\
& \leq\left|s_{m}-s_{m-1}\right|+\left|s_{m-1}-s_{m-2}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
& \leq\left(a^{m-(n+1)}+\cdots+1\right)\left|s_{n+1}-s_{n}\right| \\
& a^{n}\left(a^{m-(n+1)}+\cdots+1\right)\left|s_{1}-s_{0}\right| \\
& \leq \frac{a^{n}}{1-a} .
\end{aligned}
$$

Since $a<1, \lim _{n \rightarrow \infty} \frac{a^{n}}{1-a}=0$, then there exists $N \mid$

$$
\left|s_{m}-s_{n}\right|<\varepsilon, \quad \forall m, n>N .
$$

Therefore $\left\{s_{n}\right\}$ is a Cauchy sequence. As the limit exists, we apply the limit laws to conclude

$$
s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} f\left(s_{n-1}\right)=f\left(\lim _{n \rightarrow \infty} s_{n-1}\right)=f(s) .
$$

