MATH 5105 Differential and Integral Analysis: Exercise Sheet 3

Classwork Exercises

1. Assume that f is continuous on $[a, b]$ and differentiable on (a, b).
(a) If $f^{\prime} \leq 0$ then f is non-increasing (monotone decreasing),
(b) If $f^{\prime}>0$ then f is strictly increasing,
(c) If $f^{\prime}<0$ then f is strictly decreasing.

Problems

2. Let $g=\arctan$ the inverse of the function $f(x)=\tan (x), x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Applying the inverse function theorem for one variable, find a formula for the derivative $g^{\prime}(y)$ in terms of y.
3. (a) Find a bijective, continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime}(0)=0$ and a continuous inverse.
(b) Let $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ be differentiable and decreasing. Prove or disprove : if $\lim _{x \rightarrow 0} f(x)=0$ then $\lim _{x \rightarrow 0} f^{\prime}(x)=0$.
4. Show that $\sin (x) \leq x$ for all $x \geq 0$.
5. (Hard) Using the Intermediate Value Theorem, prove that a continuous function maps intervals to intervals.
6. (Hard) Let f be a differentiable function on \mathbb{R} and let

$$
a=\sup \left\{\left|f^{\prime}(x)\right| \mid x \in \mathbb{R}\right\}<1 .
$$

Let $x_{0} \in \mathbb{R}$ and define recursively $s_{n}=f\left(s_{n-1}\right), n \geq 1$. Prove that $\left\{s_{n}\right\}$ is convergent sequence and determine its limit.

