MATH 5105 Differential and Integral Analysis: Exercise Sheet 3

Classwork Exercises

- 1. Assume that f is continuous on [a, b] and differentiable on (a, b).
 - (a) If $f' \leq 0$ then f is non-increasing (monotone decreasing),
 - (b) If f' > 0 then f is strictly increasing,
 - (c) If f' < 0 then f is strictly decreasing.

Problems

- 2. Let $g = \arctan$ the inverse of the function $f(x) = \tan(x), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Applying the inverse function theorem for one variable, find a formula for the derivative g'(y) in terms of y.
- 3. (a) Find a bijective, continuously differentiable function $f : \mathbb{R} \to \mathbb{R}$ with f'(0) = 0and a continuous inverse.
 - (b) Let $f : \mathbb{R}_0^+ \to \mathbb{R}$ be differentiable and decreasing. Prove or disprove : if $\lim_{x\to 0} f(x) = 0$ then $\lim_{x\to 0} f'(x) = 0$.
- 4. Show that $sin(x) \le x$ for all $x \ge 0$.
- 5. (Hard) Using the Intermediate Value Theorem, prove that a continuous function maps intervals to intervals.
- 6. (Hard) Let f be a differentiable function on \mathbb{R} and let

$$a = \sup\{|f'(x)| \mid x \in \mathbb{R}\} < 1.$$

Let $x_0 \in \mathbb{R}$ and define recursively $s_n = f(s_{n-1}), n \ge 1$. Prove that $\{s_n\}$ is convergent sequence and determine its limit.