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Coursework Exercises

1. For the following functions compute directly

r(x) = f(x)− f(a)− f ′(a)(x− a)

and show that limx→a
r(x)
x−a = 0.

(a) f(x) = x2, a ∈ R,

Proof.

r(x) = x2 − a2 − 2a(x− a)

Therefore

lim
x→a

r(x)

x− a
= lim

x→a

x2 − a2 − 2a(x− a)

x− a
= lim

x→a
x+ 1− 2a

= 0.

(b) f(x) =
√
x, a > 0,

Proof.

r(x) =
√
x−
√
a− 1

2
√
a

(x− a)

Therefore

lim
x→a

r(x)

x− a
= lim

x→a

√
x−
√
a− 1

2
√
a
(x− a)

x− a

= lim
x→a

x−a√
x+
√
a
− 1

2
√
a
(x− a)

x− a

= lim
x→a

1√
x+
√
a
− 1

2
√
a

= 0.
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(c) f(x) = xn, a ∈ R, n ∈ N.

Proof.

lim
x→a

r(x)

x− a
= lim

x→a

xn − an − nan−1(x− a)

x− a

= lim
x→a

(x− a)
∑n−1

k=0 x
kan−1−k − nan−1(x− a)

x− a

= lim
x→a

n−1∑
k=0

xkan−1−k − nan−1 = 0.

Problems

2. Suppose that f : R→ R is a differentiable function that satisfies |f ′(x)| ≤ 1 for all
x ∈ R. Show that

|f(x)− f(y)| ≤ |x− y|, ∀x, y ∈ R.

Proof. Without loss of generality, assume that y > x. We then apply the Mean
Value Theorem on [x, y]. We obtain

f(y)− f(x) = f ′(ξ)(y − x)

for some ξ ∈ (x, y). This implies that

|f(x)− f(y)| ≤ |f ′(ξ)||y − x| ≤ |y − x|.

3. Let f be defined on R and suppose that

|f(x)− f(y)| ≤ |x− y|2 ∀x, y ∈ R

Show that f is a constant function.

Proof. From the above inequality for all x, a ∈ R, x 6= a we have∣∣∣∣f(x)− f(a)

x− a

∣∣∣∣ ≤ |x− a|
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We claim that this shows that f is differentiable at a with f ′(a) = 0. To see this
we note that for any ε > 0 we may choose δ = ε and then if 0 < |x− a| < δ then∣∣∣∣f(x)− f(a)

x− a
− 0

∣∣∣∣ =

∣∣∣∣f(x)− f(a)

x− a

∣∣∣∣ ≤ |x− a| < δ = ε.

In other words,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= 0.

Therefore as f ′ = 0 on a closed interval, f ≡ const. on R.

Extra Exercises

4. Let, f, g : R→ R be differentiable with

f ′ = g, & g′ = −f

Show that between every two zeroes of f there is a zero of g and between every
two zeroes of g there is a zero of f .

Proof. Choose a, b ∈ R with a < b such that f(a) = f(b) = 0. As f is differen-
tiable on R, the assumptions of Rolle’s theorem are satisfied on [a, b], that is f is
continuous on [a, b] and differentiable on (a, b).

Therefore there exists c ∈ (a, b) such that f ′(c) = 0. As f ′ = g, g(c) = f ′(c) = 0.
An analogous argument is valid with f and g exchanged.

5. Let f : R→ R be twice differentiable [that is (f ′)′ = f ′′] with

f(0) = f ′(0) = 0 & f(1) = 1.

Show that there exists a c ∈ (0, 1) such that f ′′(c) > 1.

Proof. As f is differentiable on R, the assumptions of the MVT are satisfied on
[0, 1], that is f is continuous on [0, 1] and differentiable on (0, 1).

Therefore there exists d ∈ (0, 1) such that

f ′(d) =
f(1)− f(0)

1− 0
= 1

As f ′ is differentiable on R, the assumptions of the MVT are satisfied on [0, d].
Therefore there exists a c ∈ (0, d) such that

f ′′(c) =
f ′(d)− f ′(0)

d− 0
=

1

d
.

As d ∈ (0, 1), 1d > 1.
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6. Suppose that f is continuous on [0, 1], differentiable on (0, 1) and f(0) = 0. Prove

that if f ′ is decreasing on (0, 1) then the function g : (0, 1)→ R given by g(x) = f(x)
x

is decreasing on (0, 1).

Proof. Since g is differentiable on (0, 1) then it suffices to show that g′(x) ≤ 0 for
all x ∈ (0, 1). As

g′(x) =
xf ′(x)− f(x)

x2

we only need to show that f ′(x)x − f(x) ≤ 0. We apply the MVT to f on [0, x],
there exists c ∈ (0, x) such that f(x)−f(0) = f ′(c)(x−0). As f ′ is decreasing and
c < x then f ′(x) ≤ f ′(c). Therefore

f(x) = f ′(c)x ≥ f ′(x)x

and hence f ′(x)x− f(x) ≤ 0 for all x ∈ (0, 1).
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