MATH 5105 Differential and Integral Analysis: Solution Sheet 2

Coursework Exercises

1. For the following functions compute directly

$$
r(x)=f(x)-f(a)-f^{\prime}(a)(x-a)
$$

and show that $\lim _{x \rightarrow a} \frac{r(x)}{x-a}=0$.
(a) $f(x)=x^{2}, a \in \mathbb{R}$,

Proof.

$$
r(x)=x^{2}-a^{2}-2 a(x-a)
$$

Therefore

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{r(x)}{x-a} & =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}-2 a(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} x+1-2 a \\
& =0
\end{aligned}
$$

(b) $f(x)=\sqrt{x}, a>0$,

Proof.

$$
r(x)=\sqrt{x}-\sqrt{a}-\frac{1}{2 \sqrt{a}}(x-a)
$$

Therefore

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{r(x)}{x-a} & =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}-\frac{1}{2 \sqrt{a}}(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{x-a}{\sqrt{x}+\sqrt{a}}-\frac{1}{2 \sqrt{a}}(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}-\frac{1}{2 \sqrt{a}} \\
& =0 .
\end{aligned}
$$

(c) $f(x)=x^{n}, a \in \mathbb{R}, n \in \mathbb{N}$.

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{r(x)}{x-a} & =\lim _{x \rightarrow a} \frac{x^{n}-a^{n}-n a^{n-1}(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a) \sum_{k=0}^{n-1} x^{k} a^{n-1-k}-n a^{n-1}(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \sum_{k=0}^{n-1} x^{k} a^{n-1-k}-n a^{n-1}=0 .
\end{aligned}
$$

Problems

2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function that satisfies $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$. Show that

$$
|f(x)-f(y)| \leq|x-y|, \quad \forall x, y \in \mathbb{R}
$$

Proof. Without loss of generality, assume that $y>x$. We then apply the Mean Value Theorem on $[x, y]$. We obtain

$$
f(y)-f(x)=f^{\prime}(\xi)(y-x)
$$

for some $\xi \in(x, y)$. This implies that

$$
|f(x)-f(y)| \leq\left|f^{\prime}(\xi)\right||y-x| \leq|y-x| .
$$

3. Let f be defined on \mathbb{R} and suppose that

$$
|f(x)-f(y)| \leq|x-y|^{2} \quad \forall x, y \in \mathbb{R}
$$

Show that f is a constant function.
Proof. From the above inequality for all $x, a \in \mathbb{R}, x \neq a$ we have

$$
\left|\frac{f(x)-f(a)}{x-a}\right| \leq|x-a|
$$

We claim that this shows that f is differentiable at a with $f^{\prime}(a)=0$. To see this we note that for any $\varepsilon>0$ we may choose $\delta=\varepsilon$ and then if $0<|x-a|<\delta$ then

$$
\left|\frac{f(x)-f(a)}{x-a}-0\right|=\left|\frac{f(x)-f(a)}{x-a}\right| \leq|x-a|<\delta=\varepsilon
$$

In other words,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0
$$

Therefore as $f^{\prime}=0$ on a closed interval, $f \equiv$ const. on \mathbb{R}.

Extra Exercises

4. Let, $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with

$$
f^{\prime}=g, \quad \& \quad g^{\prime}=-f
$$

Show that between every two zeroes of f there is a zero of g and between every two zeroes of g there is a zero of f.

Proof. Choose $a, b \in \mathbb{R}$ with $a<b$ such that $f(a)=f(b)=0$. As f is differentiable on \mathbb{R}, the assumptions of Rolle's theorem are satisfied on $[a, b]$, that is f is continuous on $[a, b]$ and differentiable on (a, b).
Therefore there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$. As $f^{\prime}=g, g(c)=f^{\prime}(c)=0$. An analogous argument is valid with f and g exchanged.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable [that is $\left.\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}\right]$ with

$$
f(0)=f^{\prime}(0)=0 \quad \& \quad f(1)=1
$$

Show that there exists a $c \in(0,1)$ such that $f^{\prime \prime}(c)>1$.
Proof. As f is differentiable on \mathbb{R}, the assumptions of the MVT are satisfied on $[0,1]$, that is f is continuous on $[0,1]$ and differentiable on $(0,1)$.
Therefore there exists $d \in(0,1)$ such that

$$
f^{\prime}(d)=\frac{f(1)-f(0)}{1-0}=1
$$

As f^{\prime} is differentiable on \mathbb{R}, the assumptions of the MVT are satisfied on $[0, d]$. Therefore there exists a $c \in(0, d)$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(d)-f^{\prime}(0)}{d-0}=\frac{1}{d}
$$

As $d \in(0,1), \frac{1}{d}>1$.
6. Suppose that f is continuous on $[0,1]$, differentiable on $(0,1)$ and $f(0)=0$. Prove that if f^{\prime} is decreasing on $(0,1)$ then the function $g:(0,1) \rightarrow \mathbb{R}$ given by $g(x)=\frac{f(x)}{x}$ is decreasing on $(0,1)$.

Proof. Since g is differentiable on $(0,1)$ then it suffices to show that $g^{\prime}(x) \leq 0$ for all $x \in(0,1)$. As

$$
g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}}
$$

we only need to show that $f^{\prime}(x) x-f(x) \leq 0$. We apply the MVT to f on $[0, x]$, there exists $c \in(0, x)$ such that $f(x)-f(0)=f^{\prime}(c)(x-0)$. As f^{\prime} is decreasing and $c<x$ then $f^{\prime}(x) \leq f^{\prime}(c)$. Therefore

$$
f(x)=f^{\prime}(c) x \geq f^{\prime}(x) x
$$

and hence $f^{\prime}(x) x-f(x) \leq 0$ for all $x \in(0,1)$.

