MATH 5105 Differential and Integral Analysis Exercise Sheet 2

Coursework Exercises

1. For the following functions compute directly

$$
r(x)=f(x)-f(a)-f^{\prime}(a)(x-a)
$$

and show that $\lim _{x \rightarrow a} \frac{r(x)}{x-a}=0$.
(a) $f(x)=x^{2}, a \in \mathbb{R}$,
(b) $f(x)=\sqrt{x}, a>0$,
(c) $f(x)=x^{n}, a \in \mathbb{R}, n \in \mathbb{N}$.

Problems

2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function that satisfies $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$. Show that

$$
|f(x)-f(y)| \leq|x-y|, \quad \forall x, y \in \mathbb{R}
$$

3. Let f be defined on \mathbb{R} and suppose that

$$
|f(x)-f(y)| \leq|x-y|^{2} \quad \forall x, y \in \mathbb{R}
$$

Show that f is a constant function.
4. Let, $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with

$$
f^{\prime}=g, \quad \& \quad g^{\prime}=-f
$$

Show that between every two zeroes of f there is a zero of g and between every two zeroes of g there is a zero of f.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable (that is $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$) with

$$
f(0)=f^{\prime}(0)=0 \quad \& \quad f(1)=1
$$

Show that there exists a $c \in(0,1)$ such that $f^{\prime \prime}(c)>1$.
6. Suppose that f is continuous on $[0,1]$, differentiable on $(0,1)$ and $f(0)=0$. Prove that if f^{\prime} is decreasing on $(0,1)$ then the function $g:(0,1) \rightarrow \mathbb{R}$ given by $g(x)=\frac{f(x)}{x}$ is decreasing on $(0,1)$.

