MATH 5105 Differential and Integral Analysis: Solution Sheet 1

Coursework Exercises

1. Using the definition of continuity, show that the following functions are continuous
(a) $f(x)=x^{2}$ at $x=0$,

Proof. Let us consider $\left|x^{2}\right|$. Then if we choose $|x|<\delta$ where $\delta=\sqrt{\varepsilon}$, then we see that $|x|^{2}=|x||x|<\delta^{2}=\varepsilon$.
(b) $f(x)=|x|$ on \mathbb{R},

Proof. Let $a \in \mathbb{R}$. Then let us consider $\| x|-|a||$. We see that by the reverse triangle inequality $\| x|-|a|| \leq|x-a|$. Therefore if $|x-a|<\delta$ where we choose $\delta=\varepsilon$ then $\| x|-|a|| \leq|x-a|<\delta=\varepsilon$.
(c) $f(x)=\frac{1}{x^{2}}$ on $(0, \infty)$.

Proof. Let $a \in \mathbb{R}$ where $a>0$. Then $\left|\frac{1}{x^{2}}-\frac{1}{a^{2}}\right|=\frac{\left|x^{2}-a^{2}\right|}{|x|^{2}|a|^{2}}$. We choose here that $|x-a|<\frac{a}{2}$ so that $|x|>\frac{a}{2}$. Furthermore $|x+a| \leq \frac{5 a}{2}$. This then gives

$$
\begin{aligned}
\left|\frac{1}{x^{2}}-\frac{1}{a^{2}}\right| & =\frac{\left|x^{2}-a^{2}\right|}{|x|^{2}|a|^{2}}=\frac{|x-a||x+a|}{|x|^{2}|a|^{2}} \\
& \leq \frac{|x-a||x+a|}{|a|^{2}} \times \frac{4}{a^{2}} \leq \frac{4|x-a||x+a|}{a^{4}} \leq \frac{10|x-a|}{a^{3}}
\end{aligned}
$$

Therefore we choose $\delta=\min \left\{\frac{a^{3} \varepsilon}{10}, \frac{a}{2}\right\}$.
2. Use the definition of derivative to calculate the derivatives of the following functions
(a) $f(x)=\sqrt{x}$ for $x \in(0, \infty)$,

Proof. The derivative is given by $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. We compute as follows

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(b) $f(x)=(x+2)^{2}$ for $x \in \mathbb{R}$,

Proof. Computing

$$
\lim _{h \rightarrow 0} \frac{(x+h+2)^{2}-(x+2)^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 h(x+2)}{h}=2(x+2)
$$

(c) $f(x)=x^{2} \cos (x)$ at $x=0$,

Proof. Computing we have

$$
\begin{aligned}
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0} \frac{h^{2} \cos (h)-0}{h-0} \\
& =\lim _{h \rightarrow 0} h \cos h=0
\end{aligned}
$$

Problems

3. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x^{2}}\right), & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

(a) Show that f is differentiable at $x=0$ and compute $f^{\prime}(0)$,

Proof. Consider the difference quotient

$$
\frac{f(x)-f(0)}{x-0}=\frac{x^{2} \sin \frac{1}{x^{2}}-0}{x-0}=x \sin \frac{1}{x^{2}}
$$

Given any $\varepsilon>0$, let $\delta=\varepsilon$. Then given any $0<|x|<\delta$, we have

$$
\left|x \sin \frac{1}{x^{2}}-0\right|=|x|\left|\sin \frac{1}{x^{2}}\right| \leq|x| \leq \delta
$$

as $|\sin y| \leq 1, \forall y \in \mathbb{R}$. Hence

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}=0
$$

Therefore f is differentiable at zero with $f^{\prime}(0)=0$.
(b) Find $f^{\prime}(x)$ for $x \neq 0$ (given that $\frac{d}{d x} \sin x=\cos x$),

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2}{x^{3}} x^{2} \cos \left(\frac{1}{x^{2}}\right) \\
& =2 x \sin \left(\frac{1}{x}\right)-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right) .
\end{aligned}
$$

(c) Show that $f^{\prime}(x)$ is not continuous at $x=0$. Now we see that the first term satisfies $\lim _{x \rightarrow 0} 2 x \sin \left(\frac{1}{x^{2}}\right)=0$ but

$$
-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right)
$$

has no limit as $x \rightarrow 0$ hence $f(x)$ has no limit as $x \rightarrow 0$ so f is not continuous.
4. Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous on $[-1,1]$. Assume that f is differentiable at $x=0$ and $f(0)=0$. Consider the function

$$
g(x)=\left\{\begin{array}{cc}
\frac{f(x)}{x}, & x \neq 0 \\
f^{\prime}(0), & x=0 .
\end{array}\right.
$$

(a) Show that g is continuous at $x=0$,

Proof. A function g is continuous at a if $\lim _{x \rightarrow a} g(x)=g(a)$. Here we let $a=0$ and

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=g(0)
$$

Hence g is continuous at 0 .
(b) Is g continuous for $x \neq 0$?

Proof. g is clearly continuous if $x \neq 0$ as g is the quotient of continuous functions and the numerator is not zero for $x \neq 0$.
(c) Deduce that there is some number M such that

$$
\frac{f(x)}{x} \leq M, \quad \forall x \in[-1,1] \backslash\{0\}
$$

Proof. Since g is continuous on a closed bounded interval, this shows that g is bounded that on $[-1,1] \Longrightarrow \exists M>0| | g(x) \mid \leq M \forall x \in[-1,1]$.
5. Give an example of a function f that is differentiable on (a, b) but that can not be made differentiable on $[a, b]$ by any definition of $f(a)$ or $f(b)$. Can you give an example where f is bounded?

Proof. There are many possible examples. For example consider $f(x)=\frac{1}{(x-a)(x-b)}$. f is clearly differentiable and continuous on (a, b) but cannot be made continuous at $x=a$ or $x=b$ by any definition of $f(a), f(b)$.
We consider a convolution of the above function with a bounded function

$$
g(x)=\sin \left(\frac{1}{(x-a)(x-b)}\right)
$$

g is clearly differentiable (and continuous) on (a, b) but cannot be made continuous at $x=a$ or $x=b$ by any definition of $g(a), g(b)$.
6. Let $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0, \quad f(0)=0$.
(a) Show that f is continuous at $x=0$.

Proof. We will show that f is continuous at $x=0$ by showing that

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

Given $\varepsilon>0$ we choose $\delta=\varepsilon$ so that if $0<|x|<\delta=\varepsilon$ then

$$
\left|x \sin \left(\frac{1}{x}\right)-0\right| \leq|x|\left|\sin \left(\frac{1}{x}\right)\right|=|x|<\delta=\varepsilon
$$

(b) Is f differentiable at $x=0$? Justify any answer.

Proof. f is not differentiable because if we compute the difference quotient

$$
\frac{f(x)-f(0)}{x-0}=\sin \left(\frac{1}{x}\right)
$$

this has no limit as $x \rightarrow 0$.

