MATH 5105 Differential and Integral Analysis Exercise Sheet 1

- Coursework exercises are basic questions designed to help you understand lecture material. These questions should be able to be completed without reference to solutions.
- Problems are exam level questions which require critical thinking.

Coursework Exercises

- 1. Using the definition of continuity, show that the following functions are continuous
 - (a) $f(x) = x^2$ at x = 0,
 - (b) f(x) = |x| on \mathbb{R} ,
 - (c) $f(x) = \frac{1}{x^2}$ on $(0, \infty)$.
- 2. Use the definition of derivative to calculate the derivatives of the following functions
 - (a) $f(x) = \sqrt{x}$ for $x \in (0, \infty)$,
 - (b) $f(x) = (x+2)^2 \text{ for } x \in \mathbb{R},$
 - (c) $f(x) = x^2 \cos(x)$ at x = 0.

Problems

3. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

- (a) Show that f is differentiable at x = 0 and compute f'(0),
- (b) Find f'(x) for $x \neq 0$ (given that $\frac{d}{dx} \sin x = \cos x$),
- (c) Show that f'(x) is not continuous at x = 0.

4. Let $f:[-1,1]\to\mathbb{R}$ be continuous on [-1,1]. Assume that f is differentiable at x=0 and f(0)=0. Consider the function

$$g(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0\\ f'(0), & x = 0. \end{cases}$$

- (a) Show that g is continuous at $x \neq 0$,
- (b) Is g continuous for x = 0?
- (c) Deduce that there is some number M such that

$$\frac{f(x)}{x} \le M, \quad \forall x \in [-1, 1] \setminus \{0\}.$$

- 5. Give an example of a function f that is differentiable on (a,b) but that can not be made differentiable on [a,b] by any definition of f(a) or f(b). Can you give an example where f is bounded?
- 6. Let $f(x) = x \sin(\frac{1}{x}), x \neq 0, \quad f(0) = 0.$
 - (a) Show that f is continuous at x = 0.
 - (b) Is f differentiable at x = 0? Justify any answer.