MATH 5105 Differential and Integral Analysis Exercise Sheet 1

- Coursework exercises are basic questions designed to help you understand lecture material. These questions should be able to be completed without reference to solutions.
- Problems are exam level questions which require critical thinking.

Coursework Exercises

1. Using the definition of continuity, show that the following functions are continuous
(a) $f(x)=x^{2}$ at $x=0$,
(b) $f(x)=|x|$ on \mathbb{R},
(c) $f(x)=\frac{1}{x^{2}}$ on $(0, \infty)$.
2. Use the definition of derivative to calculate the derivatives of the following functions
(a) $f(x)=\sqrt{x}$ for $x \in(0, \infty)$,
(b) $f(x)=(x+2)^{2}$ for $x \in \mathbb{R}$,
(c) $f(x)=x^{2} \cos (x)$ at $x=0$.

Problems

3. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x^{2}}\right), & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

(a) Show that f is differentiable at $x=0$ and compute $f^{\prime}(0)$,
(b) Find $f^{\prime}(x)$ for $x \neq 0$ (given that $\frac{d}{d x} \sin x=\cos x$),
(c) Show that $f^{\prime}(x)$ is not continuous at $x=0$.
4. Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous on $[-1,1]$. Assume that f is differentiable at $x=0$ and $f(0)=0$. Consider the function

$$
g(x)=\left\{\begin{aligned}
\frac{f(x)}{x}, & x \neq 0 \\
f^{\prime}(0), & x=0
\end{aligned}\right.
$$

(a) Show that g is continuous at $x \neq 0$,
(b) Is g continuous for $x=0$?
(c) Deduce that there is some number M such that

$$
\frac{f(x)}{x} \leq M, \quad \forall x \in[-1,1] \backslash\{0\}
$$

5. Give an example of a function f that is differentiable on (a, b) but that can not be made differentiable on $[a, b]$ by any definition of $f(a)$ or $f(b)$. Can you give an example where f is bounded?
6. Let $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0, \quad f(0)=0$.
(a) Show that f is continuous at $x=0$.
(b) Is f differentiable at $x=0$? Justify any answer.
