MTH5130 Mock Exam Paper

9th January 2024

Q1

- 1. Find all integers satisfying $10x \equiv 511 \mod 841$. Show your working. [4]
- 2. Find the last two digits of 2^{2021} . Show your working. [8]
- 3. Find all integers of order 6 mod 13. Moreover, find all primitive roots mod 13. [8] Show your working in both cases.

A1

(1) [Similar to examples seen in lectures] By Euclid's algorithm, gcd(10, 841) = 1 and $(-84) \cdot 10 + 1 \cdot 841 = 1$ (simply spotting a solution to 10r + 841s = 1 is fine). Multiplying -84 on the both sides of the congruence equation, we get

$$x \equiv 511 \cdot (-84) \equiv -33 \equiv 808$$

mod 841. Any integer congruent to 808 mod 841 defines a solution and this is unique mod 841.

$[x = 808 \text{ gets only +2. Trial and error to find } x \equiv 808 \text{ mod } 841 \text{ gets only +3 as it does not really show that *the* solution to the equation is 808 mod 841]}$

(2) [Similar to examples seen in example sheets] We need to find $0 \le z \le 99$ satisfying $2^{2021} \equiv z \mod 100$. This is equivalent to finding $0 \le z \le 99$ satisfying $2^{2021} \equiv z \mod 25$ and $2^{2021} \equiv z \mod 4$. By Theorem 15,

 $2^{\phi(25)} = 2^{20} \equiv 1$

mod 25 since $\phi(25) = \phi(5^2) = 5(5-1) = 20$. It follows that

$$2^{2021} = 2^{20 \cdot 101 + 1} = (2^{20})^{101} 2 \equiv 2$$

 $\operatorname{mod} 25.$

On the other hand,

$$2^{2021} \equiv 0$$

 $\operatorname{mod} 4.$

Combining these, the integer z we are looking for is a solution to the system of congruence equations

$$\begin{array}{rrrr} x &\equiv& 2 \mod 25 \\ x &\equiv& 0 \mod 4 \end{array}$$

Since gcd(25,4) = 1, one can make appeal to the CRT. Euclid's algorithm shows that $1 \cdot 25 + (-6) \cdot 4 = 1$, hence

$$x = 25 \cdot 1 \cdot 0 + 4 \cdot (-6) \cdot 2 = -48 \equiv 52$$

mod 100 defines a (unique) solution mod 100. Therefore, z = 52 is the last two digits.

[+2 for translating the problem into mod 4 and mod 25; +1 for computing $2^{2021} \mod 4$; +2 for computing $2^{2021} \mod 25$; +3 for the CRT]

(3) [Similar to examples seen in lectures]

z	1	2	3	4	5	6	7	8	9	10	11	12
order modulo 13	1	12	3	6	4	12	12	4	3	6	12	2

Hence the integers congruent to 4 or 10 all have order $6 \mod 13$ and the integers congruent to 2, 6, 7, 11 are primitive roots mod 13.

[For order 3, +2 for correctly answering the question ('mod 13'); +2 for explaining how (for example, asserting that $4^6 \equiv 1$ is not enough; either showing by hand that 4^2 , 4^3 , 4^4 , 4^5 are all NOT congruent to 1 or make reference to a statement from the lecture that the order has to be a divisor of 12 and pointing out that 4^2 , 4^3 are not congruent to 1 mod 13). Similar for order 12]

Q2

- 1. Deduce that 143 is not a prime number from the congruence $3^{143} \equiv 126 \mod 143$. State clearly any result you are using from lectures. [3]
- 2. Let p be a prime number and let z be a primitive root mod p. Prove that

$$1, z, z^2, \dots, z^{p-2}$$

are all distinct mod p. [Hint: z is invertible mod p, i.e. for any integers a and b, if $za \equiv zb \mod p$, then $a \equiv b \mod p$, and z has order p - 1] [9]

3. Assume that 741 and 9283 are prime numbers. Using the properties of Legendre symbol, compute the Legendre symbol $\left(\frac{741}{9283}\right)$. Justify your answer. [6]

A2

(1) [Similar to examples seen in lectures] If 143 was a prime number, then it would have followed form the Fermat's Little Theorem that $3^{143} \equiv 3 \mod 143$. However, 3 is evidently not congruent to 126 mod 143. Hence 143 is NOT a prime number.

[+2 for reference to Fermat's Little Theorem]

(2) [Seen in lectures] If $z^r \equiv z^s$ for $0 \le r \le s \le p-2$, then $z^{s-r} \equiv 1 \mod p$ (since z is a primitive root mod p, z has multiplicative inverse mod p). However, $s - r \le p - 2$ and the order of z by definition is p - 1. It therefore follows that s = r.

[+0 for answering that $\left(\frac{741}{9283}\right) = -1$; +1 for simply answering that $\left(\frac{741}{9283}\right) = +1$; -1 for any single 'lucky mistake']

Q3

Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47; if insoluble, explain why.

(i)
$$x^2 \equiv 41 \mod{47}$$
. [4]

(ii) $3x^2 \equiv 32 \mod{47}$. [8]

A3

(a-i) [Similar to examples seen in lectures] Since

$$\left(\frac{41}{47}\right) \stackrel{R4}{=} (-1)^{\frac{47-1}{2}\frac{41-1}{2}} \left(\frac{47}{41}\right) = \left(\frac{47}{41}\right) \stackrel{R0}{=} \left(\frac{6}{41}\right) \stackrel{R1}{=} \left(\frac{2}{41}\right) \left(\frac{3}{41}\right) \stackrel{R3,\text{Cor26}}{=} 1 \cdot (-1) = -1,$$

this is insoluble.

[+1 for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e. calculating it); get only +1 for merely pointing out 41 is a quadratic non-residue mod 47]

(a-ii) [Partly unseen] Since gcd(3,47) = 1, we run the Euclid's algorithm, if necessary, to find $16 \cdot 3 + (-1) \cdot 47 = 1$. It therefore follows that

$$16 \cdot 3x^2 \equiv 16 \cdot 32$$

 $x^2 \equiv 512 \equiv 42$

 $\operatorname{mod}47$, i.e.

 $\operatorname{mod} 47$. Since

$$\begin{pmatrix} \frac{42}{47} \\ \frac{81}{47} \\ \frac{2}{47} \\ \frac{2}{47} \\ \frac{2}{47} \\ \frac{3}{47} \\ \frac{3}{47} \\ \frac{7}{47} \\ \frac{7}{47} \\ \frac{7}{47} \\ \frac{81}{47} \\ \frac{1}{7} \\ \frac{1}{7}$$

this latter congruence equation is soluble. To find a solution, either you do trial and error (I'll allow it), or make appeal to Proposition 28 which shows that

$$42^{\frac{47+1}{4}} = 42^{12}$$

defines a solution mod 47. It remains to simply $42^{12} \mod 47$. Since $12 = 2^3 + 2^2$ and

$$42^2 \equiv (-5)^2 = 25, 42^{2^2} \equiv 25^2 = 625 \equiv 14, 42^{2^3} \equiv 14^2 = 196 \equiv 8$$

 $\operatorname{mod}47$

$$42^{12} = 2^{2^3 + 2^2} \equiv 8 \cdot 14 = 112 \equiv 18$$

mod 47. So x = 18 does the job.

[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying $42^{12} \mod 47$]

Q4

1. Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]

- 2. Compute the convergents $\frac{s_1}{t_1}, \frac{s_2}{t_2}, \frac{s_3}{t_3}$ to $\sqrt{23}$. Show your working. **[4]**
- 3. (\geq Week 9) By working out the second smallest positive solution to the equation $x^2 23y^2 = 1$, compute the convergent $\frac{s_7}{t_7}$. [10]

A4 (1) [Similar to examples seen in lectures] By the algorithm:

$$\alpha = \lfloor \sqrt{23} \rfloor = 4 \implies \rho_1 = \frac{1}{\sqrt{23} - 4} = \frac{\sqrt{23} + 4}{7}$$

$$\alpha_1 = \lfloor \frac{\sqrt{23} + 4}{7} \rfloor = 1 \implies \rho_2 = \frac{1}{\frac{\sqrt{23} + 4}{7} - 1} = \frac{\sqrt{23} + 3}{2}$$

$$\alpha_2 = \lfloor \frac{\sqrt{23} + 3}{2} \rfloor = 3 \implies \rho_3 = \frac{1}{\frac{\sqrt{23} + 3}{2} - 3} = \frac{\sqrt{23} + 3}{7}$$

$$\alpha_3 = \lfloor \frac{\sqrt{23} + 3}{7} \rfloor = 1 \implies \rho_4 = \frac{1}{\frac{\sqrt{23} + 3}{7} - 1} = \sqrt{23} + 4$$

$$\alpha_4 = \lfloor \sqrt{23} + 4 \rfloor = 8 \implies \rho_5 = \frac{1}{(\sqrt{23} + 4) - 8} = \frac{1}{\sqrt{23} - 4} = \rho_1$$

$$\alpha_5 = \alpha_1 \qquad \dots$$

we find $\sqrt{23} = [\alpha; \overline{\alpha_1, \alpha_2, \alpha_3, \alpha_4}] = [4; \overline{1, 3, 1, 8}].$

[+1 for simply answering the question; +3 for explaining calculations]

(2) [Similar to examples seen in lectures] The convergents are calculated as

$$\begin{split} \frac{s_{-1}}{t_{-1}} &= \frac{1}{0}, \\ \frac{s_0}{t_0} &= \frac{\alpha}{1} = \frac{4}{1}, \\ \frac{s_1}{s_1} &= \frac{\alpha_1 s_0 + s_{-1}}{\alpha_1 t_0 + t_{-1}} = \frac{1 \cdot 4 + 1}{1 \cdot 1 + 0} = \frac{5}{1}, \\ \frac{s_2}{t_2} &= \frac{\alpha_2 s_1 + s_0}{\alpha_2 t_1 + t_0} = \frac{3 \cdot 5 + 4}{3 \cdot 1 + 1} = \frac{19}{4}, \\ \frac{s_3}{t_3} &= \frac{\alpha_3 s_2 + s_1}{\alpha_3 t_2 + t_1} = \frac{1 \cdot 19 + 5}{1 \cdot 4 + 1} = \frac{24}{5} \end{split}$$

[+1 each]

(3) [Similar to examples seen in lectures] Since the cycle is of length l = 4, the fundamental solution to $x^2 - 23y^2 = \pm 1$ is $(s_3, t_3) = (24, 5)$. By Theorem 48, for every $N = 1, 2, \ldots$, the pair (s_{4N-1}, t_{4N-1}) is a solution to $x^2 - 23y^2 = (-1)^{4N} = 1$, hence the second smallest solution to $x^2 - 23y^2 = \pm 1$ is defined to be (s_7, t_7) . On the other hand, $s_7 + t_7\sqrt{23}$ can be computed by

$$(24 + 5\sqrt{23})^2 = 1151 + 240\sqrt{23},$$

hence $(s_7, t_7) = (1151, 240)$.

[+1 for spotting the fundamental solution; +3 for pointing out (s_3, t_3) is the fundamental solution; +3 for pointing out that the second smallest positive solution is (s_7, t_7) ; +3 for correctly calculating (s_7, t_7)]

Q5

1. Using that 137 is a prime number, find all solutions to

$$x^2 \equiv -1 \mod 137$$

satisfying $1 \le x \le 137$. Show your working. [9]

2. (\geq Week 10) Using (1), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

A5 (1) Since $137 \equiv 1 \mod 4$, we may use Proposition 29. To this end, we firstly find a such that $\left(\frac{a}{137}\right) = -1$. For example a = 3 does the job. It then follows from Proposition 29 that $3^{\frac{137-1}{4}} = 3^{34}$ is a solution mod 137. Since

$$3^{2^2} = 81, \ 3^{2^3} = 81^2 \equiv 122, \ 3^{2^4} \equiv 88, \ 3^{2^5} \equiv 72.$$

we see that

$$3^{34} = 3^{2^5+2} = 3^{2^5}3^2 \equiv 72 \cdot 9 = 648 \equiv 100$$

mod 137. Since 100 is a solution mod 137, so is $-100 \equiv 37 \mod 137$.

[+2 for reference to Proposition 29 (in particular, +1 for asserting that $137 \equiv 1 \mod 4$); +2 for finding a; +3 for simplifying $3^{34} \mod 137$ to get one solution; +2 for spotting the solutions]

(2) We make appeal to Hermite's algorithm with z = 37 as its first step. Convergents to $\frac{37}{137}$ are calculated as follows: by the algorithm,

$$\alpha = \lfloor \frac{37}{137} \rfloor = 0 \quad \Rightarrow \quad \rho_1 = \frac{1}{\frac{37}{137} - 0} = \frac{137}{37}$$

$$\alpha_1 = \lfloor \frac{137}{37} \rfloor = 3 \quad \Rightarrow \quad \rho_2 = \frac{1}{\frac{137}{37} - 3} = \frac{37}{26}$$

$$\alpha_2 = \lfloor \frac{37}{26} \rfloor = 1 \quad \Rightarrow \quad \rho_3 = \frac{1}{\frac{37}{26} - 1} = \frac{26}{11}$$

$$\alpha_3 = \lfloor \frac{26}{11} \rfloor = 2 \quad \Rightarrow \quad \rho_4 = \frac{1}{\frac{26}{11} - 2} = \frac{11}{4}$$

$$\alpha_4 = \lfloor \frac{11}{4} \rfloor = 2 \quad \Rightarrow \quad \rho_5 = \frac{1}{\frac{11}{4} - 2} = \frac{4}{3}$$

$$\alpha_5 = \lfloor \frac{4}{3} \rfloor = 1 \quad \Rightarrow \quad \rho_6 = \frac{1}{\frac{4}{3} - 1} = 3 \in \mathbb{N}$$

$$\alpha_6 = \lfloor 3 \rfloor = 3,$$

we see that $\frac{37}{137} = [\alpha; \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6] = [0; 3, 1, 2, 2, 1, 3]$. It therefore follows that

$$\frac{s_1}{t_1} = [0;3] = \frac{1}{3}, \quad \frac{s_2}{t_2} = [0;3,1] = \frac{1}{4}, \quad \frac{s_3}{t_3} = [0;3,1,2] = \frac{3}{11}, \quad \frac{s_4}{t_4} = [0;3,1,2,2] = \frac{7}{26}, \dots$$

Since

$$t_3 < \sqrt{137} < t_4,$$

the pair $(x, y) = (t_3, 137 \cdot s_3 - 37t_3) = (11, 137 \cdot 3 - 37 \cdot 11) = (11, 4)$ satisfies $x^2 + y^2 = 137$.

[+2 for correctly working out convergents; +4 for observing via Hermite that $(x, y) = (t_3, 137 \cdot s_3 - 37t_3)$ is a solution; +3 to spot the solution]

textbfQ6 Describe the units in the ring of integers in $\mathbb{Q}(\sqrt{75})$.

A6 While $75 \equiv 3 \mod 4$, we can not use Proposition 63 to describe the ring of integers nor Proposition 66 to describe its units. Since $\sqrt{75} = 5\sqrt{3}$, it follows by definition that $\mathbb{Q}(\sqrt{75}) = \mathbb{Q}(\sqrt{3})$. It now follows from Proposition 63 that its ring of integers is $\mathbb{Z}[\sqrt{3}]$ and from Proposition 66 that the units in $\mathbb{Z}[\sqrt{3}]$ are of the form $s + t\sqrt{3}$ such that $r^2 - 3t^2 = \pm 1$. We know how to solve Pell's equation $x^2 - 3y^2 = \pm 1$. The continued fraction of $\sqrt{3}$ is $[1; \overline{1, 2}]$ with l = 2, hence the fundamental solution is $(s, t) = (s_1, t_1) = (2, 1)$. Defining $v_n + w_n\sqrt{3} = (s + t\sqrt{3})^n = (2 + \sqrt{3})^n$, the pairs (v_n, w_n) define all the positive integer solutions to Pell's equation $x^2 - 3y^2 = \pm 1$, hence units. As the questions asks to describe all the units,

$$v_n + w_n \sqrt{3}, -v_n + w_n \sqrt{3}, v_n - w_n \sqrt{3}, -v_n - w_n \sqrt{3}$$

define the units. \Box