# MTH5130 Mock Exam Paper 

9th January 2024

## Q1

1. Find all integers satisfying $10 x \equiv 511$ mod 841 . Show your working. [4]
2. Find the last two digits of $2^{2021}$. Show your working. [8]
3. Find all integers of order 6 mod 13. Moreover, find all primitive roots mod 13. [8] Show your working in both cases.

## A1

(1) [Similar to examples seen in lectures] By Euclid's algorithm, $\operatorname{gcd}(10,841)=1$ and $(-84) \cdot 10+$ $1 \cdot 841=1$ (simply spotting a solution to $10 r+841 s=1$ is fine). Multiplying -84 on the both sides of the congruence equation, we get

$$
x \equiv 511 \cdot(-84) \equiv-33 \equiv 808
$$

$\bmod 841$. Any integer congruent to $808 \bmod 841$ defines a solution and this is unique $\bmod 841$.
[ $x=808$ gets only +2. Trial and error to find $x \equiv 808$ mod 841 gets only +3 as it does not really show that *the* solution to the equation is $808 \mathbf{m o d} 841]$
(2) [Similar to examples seen in example sheets] We need to find $0 \leq z \leq 99$ satisfying $2^{2021} \equiv z$ $\bmod 100$. This is equivalent to finding $0 \leq z \leq 99$ satisfying $2^{2021} \equiv z \bmod 25$ and $2^{2021} \equiv z \bmod 4$. By Theorem 15,

$$
2^{\phi(25)}=2^{20} \equiv 1
$$

$\bmod 25$ since $\phi(25)=\phi\left(5^{2}\right)=5(5-1)=20$. It follows that

$$
2^{2021}=2^{20 \cdot 101+1}=\left(2^{20}\right)^{101} 2 \equiv 2
$$

$\bmod 25$.
On the other hand,

$$
2^{2021} \equiv 0
$$

$\bmod 4$.
Combining these, the integer $z$ we are looking for is a solution to the system of congruence equations

$$
\begin{aligned}
& x \equiv 2 \quad \bmod 25 \\
& x \equiv 0
\end{aligned}
$$

Since $\operatorname{gcd}(25,4)=1$, one can make appeal to the CRT. Euclid's algorithm shows that $1 \cdot 25+(-6) \cdot 4=$ 1 , hence

$$
x=25 \cdot 1 \cdot 0+4 \cdot(-6) \cdot 2=-48 \equiv 52
$$

$\bmod 100$ defines a (unique) solution $\bmod 100$. Therefore, $z=52$ is the last two digits.
[ $\mathbf{+ 2}$ for translating the problem into $\bmod 4$ and $\bmod 25 ;+1$ for computing $2^{2021} \bmod 4 ;+2$ for computing $2^{2021} \bmod 25 ;+3$ for the CRT]
(3) [Similar to examples seen in lectures]

| $z$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| order modulo 13 | 1 | 12 | 3 | 6 | 4 | 12 | 12 | 4 | 3 | 6 | 12 | 2 |

Hence the integers congruent to 4 or 10 all have order 6 mod 13 and the integers congruent to $2,6,7,11$ are primitive roots mod 13 .
[For order $\mathbf{3 , + 2}$ for correctly answering the question ('mod 13 '); +2 for explaining how (for example, asserting that $4^{6} \equiv 1$ is not enough; either showing by hand that $4^{2}, 4^{3}, 4^{4}, 4^{5}$ are all NOT congruent to 1 or make reference to a statement from the lecture that the order has to be a divisor of 12 and pointing out that $4^{2}, 4^{3}$ are not congruent to $1 \mathbf{m o d} 13$ ). Similar for order 12]

## Q2

1. Deduce that 143 is not a prime number from the congruence $3^{143} \equiv 126$ mod 143 . State clearly any result you are using from lectures. [3]
2. Let $p$ be a prime number and let $z$ be a primitive root $\bmod p$. Prove that

$$
1, z, z^{2}, \ldots, z^{p-2}
$$

are all distinct $\bmod p$. [Hint: $z$ is invertible $\bmod p$, i.e. for any integers $a$ and $b$, if $z a \equiv z b$ mod $p$, then $a \equiv b \bmod p$, and $z$ has order $p-1$ [ [9]
3. Assume that 741 and 9283 are prime numbers. Using the properties of Legendre symbol, compute the Legendre symbol $\left(\frac{741}{9283}\right)$. Justify your answer. [6]

A2
(1) [Similar to examples seen in lectures] If 143 was a prime number, then it would have followed form the Fermat's Little Theorem that $3^{143} \equiv 3 \bmod 143$. However, 3 is evidently not congruent to $126 \bmod 143$. Hence 143 is NOT a prime number.

## [+2 for reference to Fermat's Little Theorem]

(2) [Seen in lectures] If $z^{r} \equiv z^{s}$ for $0 \leq r \leq s \leq p-2$, then $z^{s-r} \equiv 1 \bmod p$ (since $z$ is a primitive root $\bmod p, z$ has multiplicative inverse $\bmod p$. However, $s-r \leq p-2$ and the order of $z$ by definition is $p-1$. It therefore follows that $s=r$.
(3)

$$
\left.\begin{array}{l} 
\\
\stackrel{R 4}{=}\left(\frac{741}{9283}\right) \\
\stackrel{9283}{741}) \\
\stackrel{R 0}{=}\left(\frac{391}{741}\right) \\
\stackrel{R 4}{ } \\
\stackrel{R 0}{=}\left(\frac{741}{391}\right) \\
\stackrel{350}{391}) \\
\stackrel{R 1}{=}\left(\frac{2}{391}\right)\left(\frac{175}{391}\right) \\
\stackrel{R 3}{=}\left(\frac{175}{391}\right) \\
\stackrel{R 4}{=}-\left(\frac{391}{175}\right) \\
\stackrel{R 0}{=}-\left(\frac{41}{175}\right) \\
\stackrel{R 4}{=}-\left(\frac{175}{41}\right) \\
\stackrel{R 0}{=}-\left(\frac{11}{41}\right) \\
\stackrel{R 4}{=}-\left(\frac{41}{11}\right) \\
\stackrel{R 0}{=}-\left(\frac{8}{11}\right) \\
\stackrel{R 1}{=}-\left(\frac{2}{11}\right)^{2}\left(\frac{2}{11}\right) \\
=
\end{array}\right)
$$

[ $\mathbf{+ 0}$ for answering that $\left(\frac{741}{9283}\right)=-1 ; \mathbf{+ 1}$ for simply answering that $\left(\frac{741}{9283}\right)=+1 ;-1 \mathbf{f o r}$ any single 'lucky mistake']

## Q3

Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47 ; if insoluble, explain why.
(i) $x^{2} \equiv 41 \bmod 47$. [4]
(ii) $3 x^{2} \equiv 32 \bmod 47$. [8]

## A3

(a-i) [Similar to examples seen in lectures] Since

$$
\left(\frac{41}{47}\right) \stackrel{R 4}{=}(-1)^{\frac{47-1}{2} \frac{41-1}{2}}\left(\frac{47}{41}\right)=\left(\frac{47}{41}\right) \stackrel{R 0}{=}\left(\frac{6}{41}\right) \stackrel{R 1}{=}\left(\frac{2}{41}\right)\left(\frac{3}{41}\right) \stackrel{R 3, \text { Cor } 26}{=} 1 \cdot(-1)=-1,
$$

this is insoluble.
[ +1 for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e. calculating it); get only $\mathbf{+ 1}$ for merely pointing out 41 is a quadratic non-residue mod 47]
(a-ii) [Partly unseen] Since $\operatorname{gcd}(3,47)=1$, we run the Euclid's algorithm, if necessary, to find $16 \cdot 3+(-1) \cdot 47=1$. It therefore follows that

$$
16 \cdot 3 x^{2} \equiv 16 \cdot 32
$$

$\bmod 47$, i.e.

$$
x^{2} \equiv 512 \equiv 42
$$

mod 47 . Since

$$
\begin{array}{ll} 
& \left(\begin{array}{l}
\left.\frac{42}{47}\right) \\
\stackrel{R 1}{=} \\
R 3, \mathrm{Cor} 26 \\
=
\end{array}\right. \\
\left(\frac{2}{47}\right)\left(\frac{3}{47}\right)\left(\frac{7}{47}\right) \\
\stackrel{R 4}{=} & (-1)(-1)^{\frac{47-1}{2} \frac{7-1}{2}}\left(\frac{47}{7}\right) \\
\stackrel{R 0}{=} & -\left(\frac{5}{7}\right) \\
\stackrel{R 4}{=} & (-1)(-1)^{\frac{5-1}{2} \frac{7-1}{2}}\left(\frac{7}{5}\right) \\
\stackrel{R 0}{=} & \left(\frac{2}{5}\right) \\
\stackrel{R 3}{=} & (-1)(-1) \\
= & 1
\end{array}
$$

this latter congruence equation is soluble. To find a solution, either you do trial and error (l'll allow it), or make appeal to Proposition 28 which shows that

$$
42^{\frac{47+1}{4}}=42^{12}
$$

defines a solution mod 47 . It remains to simply $42^{12} \bmod 47$. Since $12=2^{3}+2^{2}$ and

$$
42^{2} \equiv(-5)^{2}=25,42^{2^{2}} \equiv 25^{2}=625 \equiv 14,42^{2^{3}} \equiv 14^{2}=196 \equiv 8
$$

$\bmod 47$

$$
42^{12}=2^{2^{3}+2^{2}} \equiv 8 \cdot 14=112 \equiv 18
$$

$\bmod 47$. So $x=18$ does the job.
[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying $42^{12}$ $\bmod 47]$

## Q4

1. Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]
2. Compute the convergents $\frac{s_{1}}{t_{1}}, \frac{s_{2}}{t_{2}}, \frac{s_{3}}{t_{3}}$ to $\sqrt{23}$. Show your working. [4]
3. ( $\geq$ Week 9) By working out the second smallest positive solution to the equation $x^{2}-23 y^{2}=1$, compute the convergent $\frac{s_{7}}{t_{7}}$. [10]

A4 (1) [Similar to examples seen in lectures] By the algorithm:

$$
\begin{array}{ccc}
\alpha=\lfloor\sqrt{23}\rfloor=4 & \Rightarrow & \rho_{1}=\frac{1}{\sqrt{23}-4}=\frac{\sqrt{23}+4}{7} \\
\alpha_{1}=\left\lfloor\frac{\sqrt{23}+4}{7}\right\rfloor=1 & \Rightarrow & \rho_{2}=\frac{1}{\frac{\sqrt{23}+4}{7}-1}=\frac{\sqrt{23}+3}{2} \\
\alpha_{2}=\left\lfloor\frac{\sqrt{23}+3}{2}\right\rfloor=3 & \Rightarrow & \rho_{3}=\frac{1}{\frac{\sqrt{23}+3}{2}-3}=\frac{\sqrt{23}+3}{7} \\
& \swarrow & \swarrow \\
\alpha_{3}=\left\lfloor\frac{\sqrt{23}+3}{7}\right\rfloor=1 & \Rightarrow & \rho_{4}=\frac{1}{\frac{\sqrt{23}+3}{7}-1}=\sqrt{23}+4 \\
\alpha_{4}=\lfloor\sqrt{23}+4\rfloor=8 & \Rightarrow & \rho_{5}=\frac{1}{(\sqrt{23}+4)-8}=\frac{1}{\sqrt{23}-4}=\rho_{1} \\
& \swarrow
\end{array}
$$

we find $\sqrt{23}=\left[\alpha ; \overline{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}\right]=[4 ; \overline{1,3,1,8}]$.
[+1 for simply answering the question; +3 for explaining calculations]
(2) [Similar to examples seen in lectures] The convergents are calculated as

$$
\begin{aligned}
\frac{s_{-1}}{t_{-1}} & =\frac{1}{0} \\
\frac{s_{0}}{t_{0}} & =\frac{\alpha}{1}=\frac{4}{1} \\
\frac{s_{1}}{t_{1}} & =\frac{\alpha_{1} s_{0}+s_{-1}}{\alpha_{1} t_{0}+t_{-1}}=\frac{1 \cdot 4+1}{1 \cdot 1+0}=\frac{5}{1} \\
\frac{s_{2}}{t_{2}} & =\frac{\alpha_{2} s_{1}+s_{0}}{\alpha_{2} t_{1}+t_{0}}=\frac{3 \cdot 5+4}{3 \cdot 1+1}=\frac{19}{4} \\
\frac{s_{3}}{t_{3}} & =\frac{\alpha_{3} s_{2}+s_{1}}{\alpha_{3} t_{2}+t_{1}}=\frac{1 \cdot 19+5}{1 \cdot 4+1}=\frac{24}{5}
\end{aligned}
$$

## [+1 each]

(3) [Similar to examples seen in lectures] Since the cycle is of length $l=4$, the fundamental solution to $x^{2}-23 y^{2}= \pm 1$ is $\left(s_{3}, t_{3}\right)=(24,5)$. By Theorem 48 , for every $N=1,2, \ldots$, the pair $\left(s_{4 N-1}, t_{4 N-1}\right)$ is a solution to $x^{2}-23 y^{2}=(-1)^{4 N}=1$, hence the second smallest solution to $x^{2}-23 y^{2}= \pm 1$ is defined to be $\left(s_{7}, t_{7}\right)$. On the other hand, $s_{7}+t_{7} \sqrt{23}$ can be computed by

$$
(24+5 \sqrt{23})^{2}=1151+240 \sqrt{23}
$$

hence $\left(s_{7}, t_{7}\right)=(1151,240)$.
[ $\mathbf{+ 1}$ for spotting the fundamental solution; $\mathbf{+ 3}$ for pointing out $\left(s_{3}, t_{3}\right)$ is the fundamental solution; $\mathbf{+ 3}$ for pointing out that the second smallest positive solution is $\left(s_{7}, t_{7}\right) ; \mathbf{+ 3}$ for correctly calculating $\left(s_{7}, t_{7}\right)$ ]

## Q5

1. Using that 137 is a prime number, find all solutions to

$$
x^{2} \equiv-1 \bmod 137
$$

satisfying $1 \leq x \leq 137$. Show your working. [9]
2. ( $\geq$ Week 10) Using (1), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

A5 (1) Since $137 \equiv 1 \bmod 4$, we may use Proposition 29. To this end, we firstly find $a$ such that $\left(\frac{a}{137}\right)=-1$. For example $a=3$ does the job. It then follows from Proposition 29 that $3^{\frac{137-1}{4}}=3^{34}$ is a solution mod 137 . Since

$$
3^{2^{2}}=81,3^{2^{3}}=81^{2} \equiv 122,3^{2^{4}} \equiv 88,3^{2^{5}} \equiv 72
$$

we see that

$$
3^{34}=3^{2^{5}+2}=3^{2^{5}} 3^{2} \equiv 72 \cdot 9=648 \equiv 100
$$

$\bmod 137$. Since 100 is a solution $\bmod 137$, so is $-100 \equiv 37 \bmod 137$.
[ $\mathbf{+ 2}$ for reference to Proposition 29 (in particular, $\mathbf{+ 1}$ for asserting that $137 \equiv 1 \bmod 4$ ); +2 for finding $a$; +3 for simplifying $3^{34} \mathbf{m o d} 137$ to get one solution; +2 for spotting the solutions]
(2) We make appeal to Hermite's algorithm with $z=37$ as its first step. Convergents to $\frac{37}{137}$ are calculated as follows: by the algorithm,

$$
\begin{array}{lll}
\alpha=\left\lfloor\frac{37}{137}\right\rfloor=0 & \Rightarrow & \rho_{1}=\frac{1}{\frac{37}{137}-0}=\frac{137}{37} \\
\alpha_{1}=\left\lfloor\frac{137}{37}\right\rfloor=3 & \Rightarrow & \rho_{2}=\frac{1}{\frac{137}{37}-3}=\frac{37}{26} \\
\alpha_{2}=\left\lfloor\frac{37}{26}\right\rfloor=1 & \Rightarrow & \rho_{3}=\frac{1}{\frac{37}{26}-1}=\frac{26}{11} \\
& \swarrow & \swarrow \\
\alpha_{3}=\left\lfloor\frac{26}{11}\right\rfloor=2 & \Rightarrow & \rho_{4}=\frac{1}{\frac{26}{11}-2}=\frac{11}{4} \\
\alpha_{4}=\left\lfloor\frac{11}{4}\right\rfloor=2 & \Rightarrow & \rho_{5}=\frac{1}{\frac{11}{4}-2}=\frac{4}{3} \\
& \swarrow & \swarrow \\
\alpha_{5}=\left\lfloor\frac{4}{3}\right\rfloor=1 & \Rightarrow & \rho_{6}=\frac{1}{\frac{4}{3}-1}=3 \in \mathbb{N} \\
\alpha_{6}=\lfloor 3\rfloor=3, & \swarrow
\end{array}
$$

we see that $\frac{37}{137}=\left[\alpha ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right]=[0 ; 3,1,2,2,1,3]$. It therefore follows that

$$
\frac{s_{1}}{t_{1}}=[0 ; 3]=\frac{1}{3}, \frac{s_{2}}{t_{2}}=[0 ; 3,1]=\frac{1}{4}, \frac{s_{3}}{t_{3}}=[0 ; 3,1,2]=\frac{3}{11}, \frac{s_{4}}{t_{4}}=[0 ; 3,1,2,2]=\frac{7}{26}, \ldots
$$

Since

$$
t_{3}<\sqrt{137}<t_{4},
$$

the pair $(x, y)=\left(t_{3}, 137 \cdot s_{3}-37 t_{3}\right)=(11,137 \cdot 3-37 \cdot 11)=(11,4)$ satisfies $x^{2}+y^{2}=137$.
[ $\mathbf{+ 2} \mathbf{~ f o r ~ c o r r e c t l y ~ w o r k i n g ~ o u t ~ c o n v e r g e n t s ; ~} \mathbf{+ 4}$ for observing via Hermite that $(x, y)=\left(t_{3}, 137\right.$. $\left.s_{3}-37 t_{3}\right)$ is a solution; $\mathbf{+ 3}$ to spot the solution]
textbfQ6 Describe the units in the ring of integers in $\mathbb{Q}(\sqrt{75})$.
A6 While $75 \equiv 3 \bmod 4$, we can not use Proposition 63 to describe the ring of integers nor Proposition 66 to describe its units. Since $\sqrt{75}=5 \sqrt{3}$, it follows by definition that $\mathbb{Q}(\sqrt{75})=\mathbb{Q}(\sqrt{3})$. It now follows from Proposition 63 that its ring of integers is $\mathbb{Z}[\sqrt{3}]$ and from Proposition 66 that the units in $\mathbb{Z}[\sqrt{3}]$ are of the form $s+t \sqrt{3}$ such that $r^{2}-3 t^{2}= \pm 1$. We know how to solve Pell's equation $x^{2}-3 y^{2}= \pm 1$. The continued fraction of $\sqrt{3}$ is $[1 ; \overline{1,2}]$ with $l=2$, hence the fundamental solution is $(s, t)=\left(s_{1}, t_{1}\right)=(2,1)$. Defining $v_{n}+w_{n} \sqrt{3}=(s+t \sqrt{3})^{n}=(2+\sqrt{3})^{n}$, the pairs $\left(v_{n}, w_{n}\right)$ define all the positive integer solutions to Pell's equation $x^{2}-3 y^{2}= \pm 1$, hence units. As the questions asks to describe all the units,

$$
v_{n}+w_{n} \sqrt{3},-v_{n}+w_{n} \sqrt{3}, v_{n}-w_{n} \sqrt{3},-v_{n}-w_{n} \sqrt{3}
$$

define the units.

