
MTH5130 Mock Exam Paper

9th January 2024

Q1

1. Find all integers satisfying 10x ≡ 511 mod 841. Show your working. [4]

2. Find the last two digits of 22021. Show your working. [8]

3. Find all integers of order 6 mod 13. Moreover, find all primitive roots mod 13. [8] Show your
working in both cases.

A1

(1) [Similar to examples seen in lectures] By Euclid’s algorithm, gcd(10, 841) = 1 and (−84) ·10+
1 · 841 = 1 (simply spotting a solution to 10r + 841s = 1 is fine). Multiplying −84 on the both sides
of the congruence equation, we get

x ≡ 511 · (−84) ≡ −33 ≡ 808

mod 841. Any integer congruent to 808 mod 841 defines a solution and this is unique mod 841.

[x = 808 gets only +2. Trial and error to find x ≡ 808 mod 841 gets only +3 as it does not
really show that *the* solution to the equation is 808 mod 841]

(2) [Similar to examples seen in example sheets] We need to find 0 ≤ z ≤ 99 satisfying 22021 ≡ z
mod 100. This is equivalent to finding 0 ≤ z ≤ 99 satisfying 22021 ≡ z mod 25 and 22021 ≡ z mod 4.
By Theorem 15,

2ϕ(25) = 220 ≡ 1

mod 25 since ϕ(25) = ϕ(52) = 5(5− 1) = 20. It follows that

22021 = 220·101+1 = (220)1012 ≡ 2

mod 25.
On the other hand,

22021 ≡ 0

mod 4.
Combining these, the integer z we are looking for is a solution to the system of congruence equa-

tions
x ≡ 2 mod 25
x ≡ 0 mod 4

Since gcd(25, 4) = 1, one can make appeal to the CRT. Euclid’s algorithm shows that 1·25+(−6)·4 =
1, hence

x = 25 · 1 · 0 + 4 · (−6) · 2 = −48 ≡ 52
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mod 100 defines a (unique) solution mod 100. Therefore, z = 52 is the last two digits.

[+2 for translating the problem into mod 4 and mod 25; +1 for computing 22021 mod 4; +2 for
computing 22021 mod 25; +3 for the CRT]

(3) [Similar to examples seen in lectures]

z 1 2 3 4 5 6 7 8 9 10 11 12

order modulo 13 1 12 3 6 4 12 12 4 3 6 12 2

Hence the integers congruent to 4 or 10 all have order 6 mod 13 and the integers congruent to
2, 6, 7, 11 are primitive roots mod 13.

[For order 3, +2 for correctly answering the question (‘mod 13’); +2 for explaining how (for
example, asserting that 46 ≡ 1 is not enough; either showing by hand that 42, 43, 44, 45 are all
NOT congruent to 1 or make reference to a statement from the lecture that the order has to be
a divisor of 12 and pointing out that 42, 43 are not congruent to 1 mod 13). Similar for order 12]

Q2

1. Deduce that 143 is not a prime number from the congruence 3143 ≡ 126 mod 143. State clearly
any result you are using from lectures. [3]

2. Let p be a prime number and let z be a primitive root mod p. Prove that

1, z, z2, . . . , zp−2

are all distinct mod p. [Hint: z is invertible mod p, i.e. for any integers a and b, if za ≡ zb mod
p, then a ≡ b mod p, and z has order p− 1] [9]

3. Assume that 741 and 9283 are prime numbers. Using the properties of Legendre symbol, com-

pute the Legendre symbol
(

741

9283

)
. Justify your answer. [6]

A2

(1) [Similar to examples seen in lectures] If 143 was a prime number, then it would have followed
form the Fermat’s Little Theorem that 3143 ≡ 3 mod 143. However, 3 is evidently not congruent to
126 mod 143. Hence 143 is NOT a prime number.

[+2 for reference to Fermat’s Little Theorem]

(2) [Seen in lectures] If zr ≡ zs for 0 ≤ r ≤ s ≤ p− 2, then zs−r ≡ 1 mod p (since z is a primitive
root mod p, z has multiplicative inverse mod p). However, s− r ≤ p− 2 and the order of z by defini-
tion is p− 1. It therefore follows that s = r.
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(3) (
741

9283

)
R4
=

(
9283

741

)
R0
=

(
391

741

)
R4
=

(
741

391

)
R0
=

(
350

391

)
R1
=

(
2

391

)(
175

391

)
R3
=

(
175

391

)
R4
= −

(
391

175

)
R0
= −

(
41

175

)
R4
= −

(
175

41

)
R0
= −

(
11

41

)
R4
= −

(
41

11

)
R0
= −

(
8

11

)
R1
= −

(
2

11

)2( 2

11

)
= −

(
2

11

)
R2
= (−1)(−1) = 1

[+0 for answering that
(

741

9283

)
= −1; +1 for simply answering that

(
741

9283

)
= +1; −1 for

any single ‘lucky mistake’]

Q3
Which of the following congruences are soluble? If soluble, find a positive integer solution less

than 47; if insoluble, explain why.

(i) x2 ≡ 41 mod 47. [4]

(ii) 3x2 ≡ 32 mod 47. [8]

A3

(a-i) [Similar to examples seen in lectures] Since(
41

47

)
R4
= (−1)

47−1
2

41−1
2

(
47

41

)
=

(
47

41

)
R0
=

(
6

41

)
R1
=

(
2

41

)(
3

41

)
R3,Cor26

= 1 · (−1) = −1,
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this is insoluble.

[+1 for simply pointing out that it is insoluble; +3 for reference to the Legendre symbol (i.e.
calculating it); get only +1 for merely pointing out 41 is a quadratic non-residue mod 47]

(a-ii) [Partly unseen] Since gcd(3, 47) = 1, we run the Euclid’s algorithm, if necessary, to find
16 · 3 + (−1) · 47 = 1. It therefore follows that

16 · 3x2 ≡ 16 · 32

mod 47, i.e.
x2 ≡ 512 ≡ 42

mod 47. Since (
42

47

)
R1
=

(
2

47

)(
3

47

)(
7

47

)
R3,Cor26

= 1 · (−1)

(
7

47

)
R4
= (−1)(−1)

47−1
2

7−1
2

(
47

7

)
R0
= −

(
5

7

)
R4
= (−1)(−1)

5−1
2

7−1
2

(
7

5

)
R0
=

(
2

5

)
R3
= (−1)(−1)
= 1

,

this latter congruence equation is soluble. To find a solution, either you do trial and error (I’ll allow
it), or make appeal to Proposition 28 which shows that

42
47+1

4 = 4212

defines a solution mod 47. It remains to simply 4212 mod 47. Since 12 = 23 + 22 and

422 ≡ (−5)2 = 25, 422
2 ≡ 252 = 625 ≡ 14, 422

3 ≡ 142 = 196 ≡ 8

mod 47

4212 = 22
3+22 ≡ 8 · 14 = 112 ≡ 18

mod 47. So x = 18 does the job.

[+4 for simplifying the equation; +2 for reference to Proposition 28; +2 for simplifying 4212

mod 47]

Q4

1. Compute the continued fraction expression for
√
23. Show your working. [4]
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2. Compute the convergents
s1
t1
,
s2
t2
,
s3
t3

to
√
23. Show your working. [4]

3. (≥Week 9) By working out the second smallest positive solution to the equationx2−23y2 = 1,
compute the convergent

s7
t7

. [10]

A4 (1) [Similar to examples seen in lectures] By the algorithm:

α = ⌊
√
23⌋ = 4 ⇒ ρ1 =

1√
23− 4

=

√
23 + 4

7
↙

α1 = ⌊
√
23 + 4

7
⌋ = 1 ⇒ ρ2 =

1
√
23+4
7 − 1

=

√
23 + 3

2

↙

α2 = ⌊
√
23 + 3

2
⌋ = 3 ⇒ ρ3 =

1
√
23+3
2 − 3

=

√
23 + 3

7

↙

α3 = ⌊
√
23 + 3

7
⌋ = 1 ⇒ ρ4 =

1
√
23+3
7 − 1

=
√
23 + 4

↙
α4 = ⌊

√
23 + 4⌋ = 8 ⇒ ρ5 =

1

(
√
23 + 4)− 8

=
1√

23− 4
= ρ1

↙
α5 = α1 . . .

we find
√
23 = [α;α1, α2, α3, α4] = [4; 1, 3, 1, 8].

[+1 for simply answering the question; +3 for explaining calculations]

(2) [Similar to examples seen in lectures] The convergents are calculated as

s−1

t−1
=

1

0
,

s0
t0

=
α

1
=

4

1
,

s1
t1

=
α1s0 + s−1

α1t0 + t−1
=

1 · 4 + 1

1 · 1 + 0
=

5

1
,

s2
t2

=
α2s1 + s0
α2t1 + t0

=
3 · 5 + 4

3 · 1 + 1
=

19

4
,

s3
t3

=
α3s2 + s1
α3t2 + t1

=
1 · 19 + 5

1 · 4 + 1
=

24

5
.

[+1 each]

(3) [Similar to examples seen in lectures] Since the cycle is of length l = 4, the fundamental
solution to x2 − 23y2 = ±1 is (s3, t3) = (24, 5). By Theorem 48, for every N = 1, 2, . . . , the pair
(s4N−1, t4N−1) is a solution to x2 − 23y2 = (−1)4N = 1, hence the second smallest solution to
x2 − 23y2 = ±1 is defined to be (s7, t7). On the other hand, s7 + t7

√
23 can be computed by

(24 + 5
√
23)2 = 1151 + 240

√
23,

hence (s7, t7) = (1151, 240).
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[+1 for spotting the fundamental solution; +3 for pointing out (s3, t3) is the fundamental
solution; +3 for pointing out that the second smallest positive solution is (s7, t7); +3 for cor-
rectly calculating (s7, t7)]

Q5

1. Using that 137 is a prime number, find all solutions to

x2 ≡ −1 mod 137

satisfying 1 ≤ x ≤ 137. Show your working. [9]

2. (≥ Week 10) Using (1), write 137 as a sum of two squares. Show your working. State clearly any
results you are using from lectures. [9]

A5 (1) Since 137 ≡ 1 mod 4, we may use Proposition 29. To this end, we firstly find a such that( a

137

)
= −1. For example a = 3 does the job. It then follows from Proposition 29 that 3

137−1
4 = 334

is a solution mod 137. Since

32
2
= 81, 32

3
= 812 ≡ 122, 32

4 ≡ 88, 32
5 ≡ 72,

we see that
334 = 32

5+2 = 32
5
32 ≡ 72 · 9 = 648 ≡ 100

mod 137. Since 100 is a solution mod 137, so is −100 ≡ 37 mod 137.

[+2 for reference to Proposition 29 (in particular, +1 for asserting that 137 ≡ 1 mod 4); +2
for finding a; +3 for simplifying 334 mod 137 to get one solution; +2 for spotting the solutions]

(2) We make appeal to Hermite’s algorithm with z = 37 as its first step. Convergents to
37

137
are

calculated as follows: by the algorithm,

α = ⌊ 37

137
⌋ = 0 ⇒ ρ1 =

1
37
137 − 0

=
137

37

↙
α1 = ⌊137

37
⌋ = 3 ⇒ ρ2 =

1
137
37 − 3

=
37

26

↙
α2 = ⌊37

26
⌋ = 1 ⇒ ρ3 =

1
37
26 − 1

=
26

11

↙
α3 = ⌊26

11
⌋ = 2 ⇒ ρ4 =

1
26
11 − 2

=
11

4

↙
α4 = ⌊11

4
⌋ = 2 ⇒ ρ5 =

1
11
4 − 2

=
4

3

↙
α5 = ⌊4

3
⌋ = 1 ⇒ ρ6 =

1
4
3 − 1

= 3 ∈ N

↙
α6 = ⌊3⌋ = 3,
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we see that
37

137
= [α;α1, α2, α3, α4, α5, α6] = [0; 3, 1, 2, 2, 1, 3]. It therefore follows that

s1
t1

= [0; 3] =
1

3
,
s2
t2

= [0; 3, 1] =
1

4
,
s3
t3

= [0; 3, 1, 2] =
3

11
,
s4
t4

= [0; 3, 1, 2, 2] =
7

26
, . . .

Since
t3 <

√
137 < t4,

the pair (x, y) = (t3, 137 · s3 − 37t3) = (11, 137 · 3− 37 · 11) = (11, 4) satisfies x2 + y2 = 137.

[+2 for correctly working out convergents; +4 for observing via Hermite that (x, y) = (t3, 137·
s3 − 37t3) is a solution; +3 to spot the solution]

textbfQ6 Describe the units in the ring of integers in Q(
√
75).

A6 While 75 ≡ 3 mod 4, we can not use Proposition 63 to describe the ring of integers nor Pro-
position 66 to describe its units. Since

√
75 = 5

√
3, it follows by definition that Q(

√
75) = Q(

√
3).

It now follows from Proposition 63 that its ring of integers is Z[
√
3] and from Proposition 66 that the

units inZ[
√
3] are of the form s+ t

√
3 such that r2−3t2 = ±1. We know how to solve Pell’s equation

x2 − 3y2 = ±1. The continued fraction of
√
3 is [1; 1, 2] with l = 2, hence the fundamental solution

is (s, t) = (s1, t1) = (2, 1). Defining vn+wn

√
3 = (s+ t

√
3)n = (2+

√
3)n, the pairs (vn, wn) define

all the positive integer solutions to Pell’s equation x2−3y2 = ±1, hence units. As the questions asks
to describe all the units,

vn + wn

√
3,−vn + wn

√
3, vn − wn

√
3,−vn − wn

√
3

define the units. □
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