MTH5130 Mock Exam Paper

9th January 2024

Q1

1. Find all integers satisfying $10 x \equiv 511 \bmod 841$. Show your working. [4]
2. Find the last two digits of 2^{2021}. Show your working. [8]
3. Find all integers of order 6 mod 13 . Moreover, find all primitive roots mod 13 . Show your working in both cases. [8]

Q2

1. Deduce that 143 is not a prime number from the congruence $3^{143} \equiv 126 \bmod 143$. State clearly any result you are using from lectures. [3]
2. Let p be a prime number and let z be a primitive root $\bmod p$. Prove that

$$
1, z, z^{2}, \ldots, z^{p-2}
$$

are all distinct $\bmod p$. [Hint: z is invertible $\bmod p$, i.e. for any integers a and b, if $z a \equiv z b$ mod p, then $a \equiv b \bmod p$, and z has order $p-1]$ [9]
3. Assume that 741 and 9283 are prime numbers. Using the properties of Legendre symbol, compute the Legendre symbol $\left(\frac{741}{9283}\right)$. Justify your answer. [6]

Q3

Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47; if insoluble, explain why.
(i) $x^{2} \equiv 41 \bmod 47$. [4]
(ii) $3 x^{2} \equiv 32 \bmod 47$. [8]

Q4

1. Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]
2. Compute the convergents $\frac{s_{1}}{t_{1}}, \frac{s_{2}}{t_{2}}, \frac{s_{3}}{t_{3}}$ to $\sqrt{23}$. Show your working. [4]
3. (\geq Week 9) By working out the second smallest positive solution to the equation $x^{2}-23 y^{2}=1$, compute the convergent $\frac{s_{7}}{t_{7}}$. [10]

Q5

1. Using that 137 is a prime number, find all solutions to

$$
x^{2} \equiv-1 \bmod 137
$$

satisfying $1 \leq x \leq 137$. Show your working. [9]
2. (\geq Week 10) Using (1), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

Q6

1. Describe the units in the ring of integers in $\mathbb{Q}(\sqrt{75})$. [14].
