MTH5130 Mock Exam Paper

9th January 2024

Q1

- 1. Find all integers satisfying $10x \equiv 511 \mod 841$. Show your working. [4]
- 2. Find the last two digits of 2^{2021} . Show your working. [8]
- 3. Find all integers of order $6 \mod 13$. Moreover, find all primitive roots $\mod 13$. Show your working in both cases. **[8]**

Q2

- 1. Deduce that 143 is not a prime number from the congruence $3^{143} \equiv 126 \mod 143$. State clearly any result you are using from lectures. [3]
- 2. Let p be a prime number and let z be a primitive root mod p. Prove that

$$1, z, z^2, \dots, z^{p-2}$$

are all distinct mod p. [Hint: z is invertible mod p, i.e. for any integers a and b, if $za \equiv zb \mod p$, then $a \equiv b \mod p$, and z has order p-1] [9]

3. Assume that 741 and 9283 are prime numbers. Using the properties of Legendre symbol, compute the Legendre symbol $\left(\frac{741}{9283}\right)$. Justify your answer. **[6]**

Q3

Which of the following congruences are soluble? If soluble, find a positive integer solution less than 47; if insoluble, explain why.

- (i) $x^2 \equiv 41 \mod 47$. [4]
- (ii) $3x^2 \equiv 32 \mod 47$. [8]

Q4

- 1. Compute the continued fraction expression for $\sqrt{23}$. Show your working. [4]
- 2. Compute the convergents $\frac{s_1}{t_1}, \frac{s_2}{t_2}, \frac{s_3}{t_3}$ to $\sqrt{23}$. Show your working. **[4]**
- 3. (\geq Week 9) By working out the second smallest positive solution to the equation $x^2-23y^2=1$, compute the convergent $\frac{s_7}{t_7}$. [10]

Q5

1. Using that 137 is a prime number, find all solutions to

$$x^2 \equiv -1 \mod 137$$

satisfying $1 \le x \le 137$. Show your working. [9]

2. (\geq Week 10) Using (1), write 137 as a sum of two squares. Show your working. State clearly any results you are using from lectures. [9]

Q6

1. Describe the units in the ring of integers in $\mathbb{Q}(\sqrt{75})$. [14].