
MTH793P – Advanced Machine Learning

Martin Benning

Last updated on: March 16, 2021

Lecture Notes
Semester B 2021

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

2

Contents

1 Mathematical preliminaries 5
1.1 Linear algebra . 5
1.2 Calculus . 8
1.3 Probability & statistics . 9

2 Supervised learning 11
2.1 Statistical motivation . 11
2.2 Linear & polynomial regression . 13

2.2.1 Polynomial regression . 14
2.2.2 Regression with general basis functions . 15

2.3 Convex analysis . 15
2.3.1 A comment on existence and uniqueness . 18

2.4 Ill-conditioned regression problems & regularisation 19
2.4.1 Ridge regression . 21

2.5 Model selection . 22
2.6 Bias-variance decomposition . 24
2.7 The LASSO . 25

2.7.1 Gradient descent . 26
2.7.2 Gradient descent and the LASSO . 30
2.7.3 Proximal gradient descent . 30

2.8 Deep learning . 32
2.8.1 Training deep learning models . 34

2.9 Classification . 35
2.9.1 Nearest neighbour classification . 36
2.9.2 Logistic regression . 38
2.9.3 Support-vector machines (SVMs) . 42
2.9.4 Semi-supervised binary classification with graphs 45
2.9.5 From semi-supervised to unsupervised classification 49

3 Unsupervised learning 51
3.1 Clustering . 51

3.1.1 k-means clustering . 51
3.1.2 Gaußian mixture models . 53
3.1.3 Spectral clustering . 55

3.2 Matrix factorisation . 60
3.2.1 Singular value decomposition (SVD) and principal component analysis (PCA) 60
3.2.2 Sparse principal component analysis . 64

3

Omer Bobrowski

4 CONTENTS

3.2.3 Robust principal component analysis . 64
3.2.4 The linearised Bregman iteration . 66
3.2.5 A Bregman algorithm for robust PCA . 69
3.2.6 Nesterov accelerated gradient descent . 70
3.2.7 An accelerated Bregman algorithm for robust PCA 74
3.2.8 Matrix completion . 75

3.3 Autoencoders . 77
3.3.1 Stochastic gradient descent . 79
3.3.2 Automatic differentiation . 82
3.3.3 Dual numbers and forward accumulation . 82
3.3.4 Reverse accumulation . 83

The lecture notes are under constant re-development and will likely contain errors and mistakes.
I very much appreciate the finding and reporting of those (to m.benning@qmul.ac.uk). Thanks!

mailto:m.benning@qmul.ac.uk

Chapter 1

Mathematical preliminaries

In this first chapter we briefly revise basic mathematical preliminaries that we are going to use
throughout this module. Those preliminaries span topics ranging from linear algebra over calculus
to basic probability and statistics.

1.1 Linear algebra

Throughout this module, we will extensively deal with vectors and matrices. The term vector
refers to a an object that both has a magnitude and a direction. We will usually write vectors
x ∈ Rd (or x ∈ Rd×1) as

x =

x1

x2
...
xd

 ,

which we generally also refer to as column-vectors. Here each individual xj , for j ∈ {1, . . . , d}, is
a real-valued scalar, i.e. xj ∈ R for all j ∈ {1, . . . , d}. In contrast to a column-vector, we can also
consider row-vectors x> ∈ R1×d, i.e.

x> =
(
x1 x2 . . . xd

)
.

Both are special cases of a matrix, which is a rectangular array of scalars. We write a matrix
X ∈ Rd1×d2 of size d1 × d2 as

X =

x11 x12 . . . x1d2

x21 x22 . . . x2d2
...

. . .
...

xd11 xd12 . . . xd1d2

 .

The transpose X> ∈ Rd2×d1 of matrix X ∈ Rd1×d2 is defined by interchanging the rows and
columns, i.e.

X> =

x11 x21 . . . xd11

x12 x22 . . . xd12
...

. . .
...

x1d2 x2d2 . . . xd1d2

 .

5

6 1.1. LINEAR ALGEBRA

Note that we can immediately conclude (X>)> = X, and that a row-vector is simply the transpose
of a column-vector (and vice versa), which in hindsight explains our use of the notation x> for the
row-vector. Two very important concepts in the context of matrices are the range and the kernel
(or nullspace) of a matrix. The range ran(X) of a matrix X is the set of all vectors that can be
expressed in terms of X, i.e.

ran(X) := {Xz | z ∈ Rn} .

The kernel ker(X) of a matrix X is the set of all vectors that X maps onto the zero vector, i.e.

ker(X) := {z ∈ Rn |Xz = 0} .

In the following, we want to recall the two main products that are relevant for this module.
The most important vector-vector product is the so-called dot product or inner product of two
vectors x, y ∈ Rd of identical dimension, defined as

〈x, y〉 :=

d∑
j=1

xjyj .

Note that we simply multiply the individual coordinates of the vectors x and y and sum over all
products. Another common notation for the dot product is x · y.

The matrix-vector product for a matrix X ∈ Rd1×d2 and a column-vector y ∈ Rd2×1 is defined
as

(Xy)i :=

d2∑
j=1

xijyj for all i ∈ {1, . . . , d1} .

We denote the resulting (column) vector simply as Xy ∈ Rd1×1. In identical fashion, we can define
a matrix-matrix product for matrices X ∈ Rd1×d2 and Y ∈ Rd2×d3 as

(XY)ij :=

d2∑
l=1

xilylj for all i ∈ {1, . . . , d1} and j ∈ {1, . . . , d3} .

Again, we denote the resulting matrix simply as XY ∈ Rd1×d3 . We want to emphasise that the
inner product can be viewed as a special case of the matrix-matrix product, if we consider the
matrix-matrix product of a row-vector and a column-vector, i.e. for x, y ∈ Rd we have

〈x, y〉 = x>y .

Having defined an inner product, it is straight-forward to define the Euclidean norm of a vector.
The Euclidean norm ‖ · ‖ : Rd → R≥0 of a vector x ∈ Rd is defined as

‖x‖ :=
√
〈x, x〉 =

√√√√ d∑
j=1

x2
j .

Please note that sometimes we will denote the Euclidean norm by ‖ · ‖2 rather than ‖ · ‖ in order
to distinguish them from other norms. Another module-relevant vector norm is the one-norm
‖ · ‖1 : Rd → R≥0, which is defined as

‖x‖1 :=
d∑
j=1

|xj | .

CHAPTER 1. MATHEMATICAL PRELIMINARIES 7

There are numerous ways of defining a matrix norm, but the only two relevant matrix norms for
this module are the Frobenius norm, i.e.

‖X‖Fro :=

√√√√ d1∑
i=1

d2∑
j=1

x2
ij ,

and the standard matrix norm

‖X‖ := sup
‖y‖≤1

‖Xy‖ = sup
y 6=0

‖Xy‖
‖y‖

.

Here ‖ · ‖ denotes the Euclidean norm, and sup is the supremum. Before we move on to recall
basic concepts of calculus, we want to briefly address the concepts of eigenvalues and eigenvectors
of square matrices. An eigenvalue λ and an eigenvector wλ are characterised by the equation

Xwλ = λwλ . (1.1)

This means that wλ is invariant under matrix multiplication albeit a scaling with factor λ. If we
take an inner product of (1.1) with wλ, we immediately observe that an eigenvalue λ takes on the
value

λ =
〈Xwλ, wλ〉
‖wλ‖2

.

Assuming that all eigenvectors are normalised, i.e. ‖wλ‖ = 1, we conclude λ = 〈Xwλ, wλ〉. For
eigenvalues σ2 and eigenvectors vσ of X>X, i.e.

X>Xvσ = σ2vσ ,

we observe σ = ‖Xvσ‖/‖vσ‖ ≥ 0. This implies that the matrix norm equals the square-root of the
largest eigenvalue of X>X, i.e.

‖X‖ = sup
v 6=0

‖Xv‖
‖v‖

= sup
{
σ ∈ R≥0

∣∣∣X>Xv = σ2v
}
.

The square-root of the eigenvalues of X>X, i.e. σ, are known as singular values of X. More
information and properties of singular values can be found here. The eigenvectors are known as
the right singular vectors of X. In identical fashion we can derive eigenvectors uσ of XX>, which
are known as the left singular vectors of X. In this module, the most important properties are that
Xw, X>y, X>Xw and (X>X)−1b (if (X>X)−1 exists) can be expressed in terms of the singular
value decomposition of X, i.e.

X = UΣV > , (1.2)

where U ∈ Rs×min(s,d) and V ∈ Rd×min(s,d) are the matrices that contain all singular vectors
{uσi}

min(s,d)
i=1 and {vσi}

min(s,d)
i=1 as their columns, while Σ ∈ Rmin(s,d)×min(s,d) is the diagonal matrix

whose diagonal contains all singular vectors σ1 ≥ σ2 ≥ . . . ≥ σmin(s,d). With the help of Equation
(3.16), we can express Xw, X>y, X>Xw and (X>X)−1b as

Xw =

min(s,d)∑
j=1

σjuj〈vj , w〉 , X>y =

min(s,d)∑
j=1

σjvj〈uj , y〉 ,

https://en.wikipedia.org/wiki/Infimum_and_supremum
https://en.wikipedia.org/wiki/Singular_value

8 1.2. CALCULUS

and

X>Xw =

min(s,d)∑
j=1

σ2
j vj〈vj , w〉 , (X>X)−1b =

min(s,d)∑
j=1

σ−2
j vj〈vj , b〉 .

For more information on singular value decompositions we refer to this page.

1.2 Calculus

We will require the computation of (partial) derivatives, gradients and Hessian matrices during
this module. Suppose we are given a continuously differentiable function f : R → R, then its
derivative f ′ : R→ R is defined as

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
.

The notation f ′ is known as Lagrange’s notation and is the most common notation for derivatives.
Another useful notation is Leibniz’s notation df

dx that emphasises that the derivative of f with
respect to (w.r.t.) x is taken. Many useful differentiation rules exist. If you require a little refresher
you can recall many of those rules here. For continuously differentiable functions f : Rd → R in
multiple variables we can define partial derivatives as

∂f

∂xj
(x1, . . . , xd) := lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− f(x1, . . . , xj−1, xj , xj+1, . . . , xd)

h
.

If we compute the partial derivatives w.r.t. all arguments x1, . . . , xd and store them in a column-
vector, we obtain the gradient ∇f : Rd → Rd of a function f : Rd → R, i.e.

∇f(x) =
(
∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xd

(x)
)
.

Here x = (x1, . . . , xd) is a short-hand vector notation for all arguments x1, . . . , xd. For function
f : Rd2 → Rd1 with multiple outputs we can define the Jacobian matrix Jf : Rd2 → Rd1×d2 as

Jf (x) :=

∂f1
∂x1

· · · ∂f1
∂xd2

...
. . .

...
∂fd1
∂x1

· · · ∂fd1
∂xd2

 .

For many differentiation rules there exist higher-dimensional counterparts. Of particular interest
to us is the multi-dimensional chain-rule, which for a composition f ◦ g of functions f : Rd2 → Rd1
and g : Rd3 → Rd2 reads

Jf◦g(x) = Jf (g(x))Jg(x) .

In particular, for functions f : Rd1 → R and g : Rd2 → Rd1 we observe

∇(f ◦ g)(x) = ∇f(g(x))>Jg(x) .

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_composition

CHAPTER 1. MATHEMATICAL PRELIMINARIES 9

We conclude this section with second-order derivatives for multi-variable functions. A second
partial derivative is the application of the partial derivative to a partial derivative, assuming that
such a partial derivative exists, i.e.

∂2f

∂xi∂xj
(x) :=

∂f

∂xi

∂f

∂xj
(x) , for i, j ∈ {1, . . . , d} ,

for x = (x1, . . . , xd) and a function f : Rd → R. If i = j, we simply write ∂2f/∂x2
i . Based on this

concept, one can define the Hessian matrix Hf : Rd → Rd×d of second-order partial derivatives as

Hf (x) :=

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2d

 ,

for x = (x1, . . . , xd), assuming that all second-order partial derivatives exist. Note that gradient,
Jacobian and Hessian are connected via

Hf (x) = J∇f (x) .

This concludes our section on calculus. In the next and final section of the mathematical prelimi-
naries, we revisit some basic rules and notations of probability & statistics.

1.3 Probability & statistics

The expected value, or expectation, of a random variable X with finite outcomes {xi}si=1 with
probabilities {ρi}si=1 is defined as

Ei[xi] :=
s∑
i=1

xiρi . (1.3)

Since probabilities are non-negative and sum up to one, the expected value (1.3) is a weighted
average. In case all outcomes are equiprobable, i.e. ρi = 1/s for all i ∈ {1, . . . , s}, the expected
value is the normal average, or arithmetic mean.
In the absolutely continuous case, the expectation is defined as

Ex[x] =

∫
R
x ρ(x) dx ,

assuming that the cumulative distribution function of its underlying random variable X admits a
probability density function (PDF) ρ and that the above integral exists.
Please note that expectations can also be computed for measurable functions f , i.e.

Ex[f(x)] :=

∫
R
f(x) ρ(x) dx . (1.4)

For the example of an indicator function over the one-dimensional interval [a, b], i.e.

ι[a,b](x) =

{
1 x ∈ [a, b]

0 x 6∈ [a, b]
,

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Measurable_function

10 1.3. PROBABILITY & STATISTICS

we instantly observe

Ex
[
ι[a,b](x)

]
=

∫
R
ι[a,b](x) ρ(x) dx =

∫ b

a
ρ(x) dx = P (a ≤ X ≤ b) .

The right-hand-side denotes the probability that a random variable takes a value that lies in the
interval [a, b].
The variance of a random variable X is defined as

Varx[x] := Ex
[
(x− Ex[x])2

]
,

= Ex[x2]− Ex[x]2 .

The square-root of the variance, i.e. σx :=
√

Varx[x], is known as the standard deviation.
Note that expectations and variances can easily be extended to multi-variable functions. If we

have functions f in two (absolutely continuous) random variables X and Y from a joint cumulative
distribution with underlying PDF ρ for example, we simply write

Ex,y[f(x, y)] =

∫
R

∫
R
f(x, y) ρ(x, y) dx dy .

Note that two random variables X and Y are said to be independent if their probabilities or their
PDFs factor, i.e.

ρ(x, y) = ρX(x)ρY (y) .

For an arbitrary number n of random variables {Xi}ni=1, we have

ρ(x1, . . . , xn) =
n∏
i=1

ρXi(xi) .

A collection of random variables is independent and identically distributed (iid) if each random
variable has the same probability distribution (and thus the same PDF) and if all random variables
are independent. Hence, we can write the joint PDF as

ρ(x1, . . . , xn) =
n∏
i=1

ρ̃(xi) ,

where ρ̃ denotes the PDF of the underlying probability distribution. We conclude this chapter with
the definitions of the likelihood function and the posterior probability. Let X be a (continuous)
random variable with probability density function ρθ(x) that depends on parameters θ. Then the
function

ρ(x | θ) := ρθ(x)

is the likelihood function of θ, given the outcome x of X, or the probability of outcome x for the
parameter value θ. The posterior probability on the other hand is the probability of the parameters
θ given the outcome x of X, i.e. ρ(θ |x). Given the prior probability distribution function ρ(θ)
for the parameters θ, both are connected via Bayes’ rule or Bayes’ theorem for PDFs:

ρ(θ |x) =
ρ(x | θ)ρ(θ)

ρ(x)
, (1.5)

named after Reverend Thomas Bayes. With this we conclude this chapter on mathematical pre-
liminaries and begin our introduction of supervised machine learning.

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability_distribution

Chapter 2

Supervised learning

In this module we extensively study numerous aspects of supervised machine learning. The two
predominant problems in supervised machine learning are regression and classification problems.
Beginning with a statistical motivation for supervised linear regression problems, we spent the
first half of this module on regression problems, before moving on to classification problems.

2.1 Statistical motivation

In supervised machine learning, the goal is to find a function mapping f : Rn → Rm that approx-
imately maps a collection of s known input arguments {xi}si=1, with xi ∈ Rn for all i ∈ {1, . . . , s},
onto a collection of s output elements {yi}si=1, with yi ∈ Rm for all i ∈ {1, . . . , s}, i.e.

f(xi) ≈ yi , ∀i ∈ {1, . . . , s} . (2.1)

The name ’supervised’ stems from the fact that a collection of outputs {yi}si=1 needs to be known
in advance. In the following, we want to specify what we mean by ’approximately’, and why it is
not necessarily desirable to have a strict equality in (2.1).

In Figure 2.1 we see a collection of data points {(xi, yi)}si=1 that represent the weight- and
height-information for s individuals, so the goal is to find a mapping that approximately returns
the height-information when given the weight-information. We observe that the data points seem
to follow a linear trend, but with substantial and presumably random deviations from this line.
Instead of seeking a function that maps every xi onto each corresponding yi, one could rather try
to find a line that has minimal distance to each point (xi, yi). What distance, you may ask? If
we collect the error in prediction for each sample we obtain a plot like the one in Figure 2.1. The
error seems to follow a normal distribution, which is why it makes sense to model the deviation
as normal-distributed independent random variables with mean zero and variance σ2, i.e. for

εi := yi − f(xi) , ∀i ∈ {1, . . . , s} ,

we know that every εi is distributed according to

ρ(εi|0, σ) = N (εi|0, σ) :=
1√

2πσ2
e−

ε2i
2σ2 =

1√
2πσ2

e−
(f(xi)−yi)

2

2σ2 .

Assuming that all εi are independent random variables, the joint probability density reads as

ρ(ε|0, σ) =

s∏
i=1

ρ(εi|0, σ) = (2πσ2)−
s
2

s∏
i=1

e−
(f(xi)−yi)

2

2σ2 .

11

12 2.1. STATISTICAL MOTIVATION

Figure 2.1: A simple linear regression example for data points with weights- (x-axis) and height-
information (y-axis). The figure on the left shows a line fitted to the given data points that has minimal
mean-squared error w.r.t. all data points in the sense that it minimises (2.3). The plot on the right-hand-
side shows the the mean-squared error of the individual samples w.r.t. the fitted line.

If we assume that our model f is parametrised with parameters w, which in the following we denote
as fw, it seems wise to choose those parameters such that the likelihood for the joint probability
distribution is maximised, i.e. we look for parameters ŵ that satisfy

ŵ = arg max
w

{
s∏
i=1

ρ(εi|0, σ)

}
,

= arg max
w

{
(2πσ2)−

s
2

s∏
i=1

e−
(fw(xi)−yi)

2

2σ2

}
.

Due to the monotonicity of the natural logarithm, we can alternatively estimate ŵ by estimating
the minimiser of the negative log-likelihood, i.e.

ŵ = arg min
w

{
− log

(
s∏
i=1

ρ(εi|0, σ)

)}
,

= arg min
w

{
−

s∑
i=1

log (ρ(εi|0, σ))

}
,

= arg min
w

{
s

2
log(2πσ2) +

1

2σ2

s∑
i=1

(fw(xi)− yi)2

}
,

= arg min
w

{
1

2

s∑
i=1

(fw(xi)− yi)2

}
,

= arg min
w

{
1

2s

s∑
i=1

(fw(xi)− yi)2

}
. (2.2)

Hence, optimal parameters ŵ have to be chosen in order to minimise the squared Euclidean norm

CHAPTER 2. SUPERVISED LEARNING 13

w.r.t. each sample {(xi, yi)}si=1. The function

MSE(w) :=
1

2s

s∑
i=1

(fw(xi)− yi)2 (2.3)

is known as the mean-squared error (MSE) and minimising it is known as the method of least-
squares. In the following we want to address the question of how to parametrise fw and start with
a linear model.

2.2 Linear & polynomial regression

In linear regression, we parametrise our model fw in terms of a linear transformation, i.e. for a
weight w ∈ Rd+1 and fw : Rd → R we choose

fw(x) := 〈x,w〉 =
d∑
j=0

xjwj , (2.4)

where we define x0 = 1 in order to allow scalar translations w0. Suppose we are given s pairs of
input/output samples {(xi, yi)}si=1, we can estimate a weight w following (2.2) by minimising the
least-squares error with respect to all samples, i.e.

wt = arg min
w∈Rd+1

{
1

2s

s∑
i=1

|〈xi, w〉 − yi|2
}
. (2.5)

An alternative way of writing (2.5) is in terms of matrix multiplication and Euclidean norm as

wt = arg min
w∈Rd+1

{
1

2s
‖Xw − y‖2

}
,

for a matrix

X :=

1 x11 x12 · · · x1d

1 x21 x22 · · · x2d
...

...
. . .

...
1 xs1 xs2 · · · xsd

 ,

and a vector y :=
(
y1 y2 . . . ys

)
. Later in this module we will verify that the unique solution

to (2.5) are weights wt that satisfy

∇MSE(wt) = 0 . (2.6)

It will be left as a coursework exercise to show that the solution of (2.6) is the linear system of
equations of the form

s∑
i=1

x2
i0 xi0xi1 · · · xi0xid

xi1xi0 x2
i1 · · · xi1xid

...
...

. . .
...

xidxi0 xidxi1 · · · x2
id

 ŵ =

s∑
i=1

yixi ,

⇔

‖x0‖2 〈x0, x1〉 · · · 〈x0, xd〉
〈x1, x0〉 ‖x1‖2 · · · 〈x1, xd〉

...
...

. . .
...

〈xd, x0〉 〈xd, x1〉 · · · ‖xd‖2

 ŵ =
s∑
i=1

yixi . (2.7)

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares

14 2.2. LINEAR & POLYNOMIAL REGRESSION

Note that here the inner product is with respect to the sample-dimension, i.e. 〈xk, xl〉 =
∑s

i=1 xikxil.
We want to mention that we can easily extend (2.4) to functions with m-dimensional output via

fW (x) :=

〈x,w1〉
〈x,w2〉

...
〈x,wm〉

 ,

or equivalently fW (x) = W>x in matrix-multiplication form, for the matrixW ∈ R(d+1)×m defined
as

W :=

w1 w2 . . . wm

 .

In many applications, the underlying true function f is nonlinear in its argument and linear models
are insufficient in terms of their systematic bias. A simple class of nonlinear model functions are
polynomials.

2.2.1 Polynomial regression

In polynomial regression the goal is to fit polynomials of degree d to the data samples. This can
easily be achieved by equipping (2.4) with a vector of polynomials of degree d, i.e.

fw(x) := 〈φ(x), w〉 =
d∑
j=0

φ(x)jwj , (2.8)

with φ : R→ Rd+1 defined as

φ(x) :=
(
1 x x2 . . . xd

)>
.

Note that (2.8) is nonlinear in the argument x, but linear in the weight vector w. Suppose we have
s pairs {(xj , yj)}sj=1 as usual, then for each xi we have φ(xi) ∈ Rd+1. We can, therefore, define
the short-hand notations

Φ(X) :=

φ(x1)>

φ(x2)>

...
φ(xs)

>

 =

1 x1 x2

1 . . . xd1
1 x2 x2

2 . . . xd2
...
1 xs x2

s . . . xds

 ∈ Rs×(d+1) , and y :=

y1

y2
...
ys

 ∈ Rs .

As in the linear regression case we can find optimal weights by solving the least-squares problem

wt = arg min
w∈Rd+1

{
1

2s
‖Φ(X)w − y‖2

}
, (2.9)

where ‖ · ‖ denotes the Euclidean norm, or

Wt = arg min
W∈R(d+1)×m

{
1

2s
‖Φ(X)W − Y ‖2Fro

}
in case we want to parametrise a function with m-dimensional output. Here ‖ · ‖Fro denotes the
Frobenius matrix norm, and Y ∈ Rs×m is a matrix.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

CHAPTER 2. SUPERVISED LEARNING 15

2.2.2 Regression with general basis functions

The previous example of polynomial regression is just a special case of regression with more general
(nonlinear) basis functions. The parametrisation of fw remains the same as in (2.8), but the basis
functions φ : Rm → Rd+1 can represent more general classes of functions and not just polynomials.
A typical example are radial basis functions, i.e.

φ(x) :=
(
ϕ(‖x− µ0‖) ϕ(‖x− µ1‖) . . . ϕ(‖x− µd‖)

)>
,

for a function ϕ : R → R and points {µi}di=0 with µi ∈ Rm for each i ∈ {0, . . . , d}. Classical
choices for ϕ are

ϕ(x) :=

{
1− 1

α |x| |x| ≤ α
0 |x| > α

, and ϕ(x) := exp

(
− x2

2σ2

)
.

In later sections we want to discuss how to analyse and minimise rather general empirical risk
functions with loss functions ` that are not necessarily quadratic functions. Before we do so, we
want to recall some basic concepts in convex analysis first.

2.3 Convex analysis

In this section we want to more closely investigate cost- or loss-functions such as the MSE (2.3)
introduced in the previous section. In particular, we want to define convexity of a function, verify
when a function is convex and show why convexity is useful.

Definition 2.1 (Convex set). A subset C ⊂ Rn is said to be convex if

λw + (1− λ)v ∈ C ,

for all elements w, v ∈ C and λ ∈ [0, 1].

Based on this definition we can go ahead and define convex functions.

Definition 2.2 (Convex function). A function E : C → R is said to be convex if for all arguments
w, v ∈ Rn and scalars λ ∈ [0, 1] we observe

E(λw + (1− λ)v) ≤ λE(w) + (1− λ)E(v) .

In return, we can define concave functions as follows.

Definition 2.3 (Concave function). A function E : C → R is said to be concave if for all arguments
w, v ∈ Rn and scalars λ ∈ [0, 1] we observe

E(λw + (1− λ)v) ≥ λE(w) + (1− λ)E(v) .

Note that for a convex function E we automatically observe that −E is concave, and vice versa.
Before we continue, we want to introduce an extremely useful concept for the analysis of convex
and continuously differentiable functions: Bregman distances, respectively Bregman divergences.

Definition 2.4 (Bregman distance). Let E : Rn → R be a continuously differentiable function,
i.e. ∇E(w) exists for all w ∈ Rn and is continuous. Then its corresponding Bregman distance
DE : Rn × Rn → R is defined as

DE(u, v) := E(u)− E(v)− 〈∇E(v), u− v〉 ,

for all arguments u, v ∈ Rn.

https://en.wikipedia.org/wiki/Radial_basis_function

16 2.3. CONVEX ANALYSIS

Note that Bregman distances are not necessarily distances in the sense of a metric. They
merely describe the distance of a function E at point u to its linearisation around v. Before we
continue to show that this distance is non-negative if and only if E is convex, we first want to
introduce another useful distance based on the sum of two Bregman distances.

Definition 2.5 (Jensen-Shannon distance). Suppose E : C ⊂ Rn → R is a continuously differen-
tiable function defined over a convex set C. Then its Jensen-Shannon distance is defined as

JλE(u, v) := λDE(u,w) + (1− λ)DE(v, w) ,

for w := λu+ (1− λ)v ∈ C and λ ∈ [0, 1].

Straight-forward computations reveal that this Jensen-Shannon distance is nothing but the
difference between the convex combination of E(u) and E(v) and E applied to the convex combi-
nation of u and v, i.e.

JλE(u, v) = λE(u) + (1− λ)E(v)− E(λu+ (1− λ)v) . (2.10)

Remark 2.1. From the Definition 2.2 we instantly observe that JλE(u, v) ≥ 0 for all u, v ∈ C if
and only if E is convex.

Remark 2.2. For the special choice λ = 1
2 the Jenson-Shannon distance reads

J
1
2
E (u, v) =

1

2
(DE(u,w) +DE(v, w)) =

1

2
(E(u) + E(v))− E

(
u+ v

2

)
,

and is known as the Burbea-Rao distance. In particular, the Burbea-Rao distance is symmetric,
i.e J

1
2
E (u, v) = J

1
2
E (v, u).

From (2.10) we immediately observe that the Jensen-Shannon distance is non-negative if and
only if E is convex, which immediately follows from the definition of convexity, Definition 2.2.
The following corollary shows that also the Bregman distance is non-negative if and only if E is
convex.

Corollary 2.1. Let E : C → R be a differentiable function defined over a convex set C ⊂ Rn.
Then E is convex if and only if its corresponding Bregman distance DE is non-negative for all
arguments, i.e.

DE(u, v) ≥ 0 ,

for all u, v ∈ C.

Proof (non-examinable). ⇒: We first consider the case n = 1. Given u, v ∈ C, we conclude
u+ λ(v − u) ∈ C due to the convexity of C. From the convexity of E we observe

E(u+ λ(v − u)) ≤ (1− λ)E(u) + λE(v) ,

⇒ λE(v)− λE(u)− (E(u+ λ(v − u))− E(u)) ≥ 0 ,

⇒ E(v)− E(u)− E(u+ λ(v − u))− E(u)

λ
≥ 0 .

Taking the limit λ→ 0 of the left-hand-side then yields

lim
λ→0

E(v)− E(u)− E(u+ λ(v − u))− E(u)

λ
= E(v)− E(u)− E′(u)(v − u) ;

CHAPTER 2. SUPERVISED LEARNING 17

hence, we can conclude

E(v)− E(u)− E′(u)(v − u) ≥ 0 . (2.11)

For general n we define the function g(λ) := E((1 − λ)u + λv). By applying the chain rule we
obtain

g′(λ) = 〈∇E((1− λ)u+ λv), v − u〉 .

Since E is convex, it is straight-forward to see that g is also convex and that (2.11) therefore
implies

g(s)− g(t)− g′(t)(s− t) ≥ 0 ,

for any s, t ∈ [0, 1]. For the particular choices s = 1 and t = 0 this inequality reads as g(1) −
g(0)− g′(0) ≥ 0, which is equivalent to

E(v)− E(u)− 〈∇E(u), v − u〉 ≥ 0 .

Consequently, the Bregman distance DE is non-negative for all input arguments in C.
⇐: suppose we have u, v ∈ C, then w ∈ C with w := u+ λ(v− u) due to the convexity of C. Since
the Bregman distance is non-negative for all arguments in C, we can conclude

DE(u,w) ≥ 0 and DE(v, w) ≥ 0 ,

and therefore also

JλE(u, v) = λDE(u,w) + (1− λ)DE(v, w) ≥ 0

for λ ∈ [0, 1]. This implies

0 ≤ JλE(u, v) = λE(u) + (1− λ)E(v)− E(λu+ (1− λ)v) .

Hence, the function E is indeed convex.

There is a close connection between convexity and global minimisers of a function. A global
minimiser is defined as follows.

Definition 2.6 (Global minimiser). Suppose E : Rn → R is a function for which there exists a
constant Ê with

−∞ < Ê ≤ E(w) , ∀w ∈ Rn ,

i.e. the infimum of E exists and is attained. Then Ê is called the global minimum. Moreover, let
ŵ denote the argument for which E(ŵ) = Ê and, hence,

E(ŵ) ≤ E(w)

holds true, for all w ∈ Rn. Then ŵ is known as the global minimiser of E.

For convex functions E : C ⊂ Rn → R that are also differentiable, i.e. ∇E(w) exists for all
w ∈ Rn, we observe that their gradient can help us to determine a global minimiser of E.

18 2.3. CONVEX ANALYSIS

Lemma 2.1. Suppose E : C ⊂ Rn → R is a convex function that is bounded from below and also
differentiable. Then an argument ŵ satisfies ∇E(ŵ) = 0 if and only if ŵ is a global minimiser.

Proof. Since E is convex, we know DE(w, ŵ) ≥ 0 for all w ∈ C due to Corollary 2.1. This is
equivalent to

E(w)− E(ŵ)− 〈∇E(ŵ)︸ ︷︷ ︸
=0

, w − ŵ〉 ≥ 0 ,

which proves that ŵ is a global minimiser.

Based on the previous considerations we know that (2.7) can only be a solution of (2.5) if
∇E(ŵ) = 0 for E(w) := 1

2s

∑s
i=1 |〈xi, w〉 − yi|2 and

ŵ =

‖x1‖2 〈x1, x2〉 · · · 〈x1, xn〉
〈x2, x1〉 ‖x2‖2 · · · 〈x2, xn〉

...
...

. . .
...

〈xn, x1〉 〈xn, x2〉 · · · ‖xn‖2

−1

s∑
i=1

yixi .

In order to verify this, we need to compute the gradient ∇E and show that it coincides with the
previous equation, which is left as a coursework exercise.

Note that we can also write the scalar product as the multiplication of a row with a column
vector, i.e. 〈x,w〉 = x>w. With this notation we can write the previous problem in a more
compact form by defining

X :=

x>1
x>2
...
x>s

 ∈ Rs×n and y :=

y1

y2
...
ys

 ∈ Rs .

Using this notation the linear regression problem (2.5) then reads

ŵ = arg min
w∈Rn

{
1

2s
‖Xw − y‖2

}
.

The corresponding optimality condition ∇E(ŵ) = 0 reads as

X>Xŵ = X>y , (2.12)

which is also known as the normal equation associated with Xŵ = y.

2.3.1 A comment on existence and uniqueness

Before we investigate issues of regression problems due to ill-conditioning of the data matrices we
want to briefly talk about existence and uniqueness of regression problems of the form (2.12). Do
solutions to (2.12) always exist, and if they exist, are they unique? To answer the first question,
we require the following lemma.

Lemma 2.2. For every matrix X ∈ Rs×(d+1) we observe

ker(X>X) = ker(X) and ran(X>X) = ran(X>) .

CHAPTER 2. SUPERVISED LEARNING 19

Proof (non-examinable). For w ∈ ker(X) we know Xw = 0. Multiplying X> from the left,
i.e. X>Xw = 0, therefore implies w ∈ ker(X>X) and, thus, ker(X) ⊂ ker(X>X). For w ∈
ker(X>X) we know X>Xw = 0. Taking the inner product with w then yields 0 = 〈X>Xw,w〉 =
〈Xw,Xw〉 = ‖Xw‖2, which already implies Xw = 0. Hence, we concluded w ∈ ker(X), and thus,
ker(X>X) ⊂ ker(X). As an immediate consequence, we conclude ker(X) = ker(X>X).

A fundamental statement in linear algebra says that ker(X)⊥ = ran(X>), where ⊥ denotes
the orthogonal complement. Based on the first part of the proof, we verify

ran(X>) = ker(X)⊥ = ker(X>X)⊥ = ker((X>X)>)⊥ = ran(X>X) ,

which concludes the proof.

An immediate consequence of Lemma 2.2 is that a solution of (2.12) always exists.

Theorem 2.1. There always exists a solution of the Normal Equation (2.12), for all X ∈ Rs×(d+1)

and y ∈ Rs.

Proof (non-examinable). By definition we have X>y ∈ ran(X>). From Lemma 2.2 we know that
ran(X>) = ran(X>X), which implies X>y ∈ ran(X>X). This means that there must exist a
w ∈ Rd+1 with X>Xw = X>y.

Now that we know that a solution to (2.12) always exists, we need to ask ourselves when that
solution is unique. We immediately see that this is the case if and only if ker(X) = {0}. If the
kernel of X contains elements v other than 0, we observe

X>y = X>Xŵ = X>(Xŵ + Xv︸︷︷︸
=0

) = X>X(ŵ + v) ,

due to the linearity of the matrix-matrix- and matrix-vector product. Hence, ŵ + v is also a
solution of (2.12). Note that this is not a contradiction to ŵ being a global minimiser of (2.3),
since

MSE(ŵ + v) = MSE(ŵ) .

Amongst other challenges, we are going to address the non-uniqueness issue in the following section.

2.4 Ill-conditioned regression problems & regularisation

Solving a finite-dimensional regression problem can be challenging if the underlying data matrix
is ill-conditioned. Before we define what this means, we want to lead with a simple example.
Suppose we want to fit a line to two data point pars (x1, y1) and (x2, y2) with x1 = 1− c, y1 = 1,
x2 = 1 + c and y2 = 1. As in the previous section, we can solve the regression problem via (2.12)
for the matrix

X =

(
1 1− c
1 1 + c

)
and the data vector y = (y1, y2)> =

(
1 1

)>. The linear system that we obtain reads(
1 1
1 1 + c2

)
ŵ =

(
1
1

)
,

https://en.wikipedia.org/wiki/Orthogonal_complement

20 2.4. ILL-CONDITIONED REGRESSION PROBLEMS & REGULARISATION

or

ŵ =

(
1 + c−2 −c−2

−c−2 c−2

)(
1
1

)
,

if we solve for ŵ directly. It is straight-forward to see (or to calculate) that ŵ =
(
1 0

)> is the
unique solution of this linear system, which makes perfect sense as the data points lie on a line with
constant shift ŵ0 = 1 and slope ŵ1 = 1. We now want to investigate how things change if we make
an error when taking our measurements. Suppose instead of y we measure yδ =

(
1− ε 1 + ε

)>,
for some constant ε > 0. The linear system remains the same, but the right-hand-side changes,
and we have to solve (

1 1
1 1 + c2

)
ŵδ =

(
1

1 + cε

)
,

respectively

ŵδ =

(
1 + c−2 −c−2

−c−2 c−2

)(
1

1 + cε

)
;

hence, the solution to this problem reads ŵδ =
(
1− c−1ε c−1ε

)>. Now we observe something
interesting: if ε is reasonably small and the constant c is significantly larger, not much changes in
terms of the solution. Consider e.g. the values c = 1/2 and ε = 1/100. We immediately compute
ŵδ =

(
0.98 0.02

)>, which is not very different from ŵ =
(
1 0

)>. However, we get a completely
different picture if c is substantially smaller than ε. If we for instance choose c = 1/1000 while
ε remains ε = 1/100, the solution ŵδ changes to ŵδ =

(
−9 10

)>. This is very different from
ŵ. The error in the data δ := ‖y − yδ‖ =

√
2ε is very small (

√
2/100 ≈ 0.0141), whereas the

error in the reconstruction, i.e. ‖ŵ − ŵδ‖ =
√

164 ≈ 12.8063 � 0.0141, is heavily amplified. In
this particular example it is probably not surprising to see such a phenomenon: the closer the
two inputs x1 and x2 move together, the more significant the impact of small variations in y on
the slope and shift of the regression line. But can this phenomenon also appear in more complex
scenarios?

To address this question we want to look at the solution of (2.12) for more general data matrices
X (or matrices Φ(X)) and outputs y and yδ with the help of the singular value decomposition. For
simplicity, we focus on the X notation, but all steps can be carried out for any matrix. Suppose
that X = UΣV > is the singular value decomposition of X. We observe X>X = V Σ2V >, where
Σ2 is defined as the diagonal matrix with squared singular values on the diagonal. We assume that
X>X is invertible and that d < s. If we rewrite (2.3) in terms of the singular value decomposition
of X, we obtain

ŵ =

d+1∑
j=1

σ−1
j vj〈vj , X>y〉 and ŵδ =

d+1∑
j=1

σ−1
j vj〈vj , X>yδ〉 ,

respectively

ŵ − ŵδ =
d+1∑
j=1

σ−1
j vj〈vj , X>(y − yδ)〉

Omer

CHAPTER 2. SUPERVISED LEARNING 21

for their difference. Computing the squared Euclidean norm of this difference yields

‖ŵ − ŵδ‖2 =

∥∥∥∥∥∥
d+1∑
j=1

σ−1
j vj〈vj , X>(y − yδ)〉

∥∥∥∥∥∥
2

=

d+1∑
j=1

σ−2
j ‖vj‖

2
∣∣∣〈vj , X>(y − yδ)〉

∣∣∣2
≤

d+1∑
j=1

σ−2
j ‖X

>(y − yδ)‖2 ≤ σ−2
d+1(d+ 1)‖X>(y − yδ)‖2

≤ σ−2
d+1(d+ 1)‖X‖2‖y − yδ‖2 =

(
σ1

σd+1

)2

(d+ 1)‖y − yδ‖2 .

If we assume that out initial error ‖y − yδ‖ is bounded by a constant δ > 0, we can therefore
conclude

‖ŵ − ŵδ‖ ≤ κ δ
√
d+ 1 ,

where κ := σ1/σd+1 is the so-called condition number that determines the amplification of the
error in the worst case scenario. The consequence of this exercise is that we now know that the
ratio of the largest and smallest singular value of X is important for the amplification of errors in
our data. If we have any influence on the data collection process, we should aim to collect data
points {xi}si=1 such that the matrix X has a small condition number, i.e. X is well-conditioned.
Matrices X with large condition numbers are called ill-conditioned. In the following we discuss
how to compensate ill-conditioning with what is known to be Tikhonov regularisation or ridge
regression.

2.4.1 Ridge regression

In the previous section we have seen that worst-case error amplification is a consequence of data
matrices with large condition numbers. A relatively straight-forward idea to combat instability
is by approximating the original regression problem by a problem with lower condition number.
Writing the left-hand-side of the normal equation (2.12), i.e. X>Xŵ = X>y, in terms of its
singular value decomposition reads

d+1∑
j=1

σ2
j vj〈vj , ŵ〉 . (2.13)

We now replace (2.13) with a version where we shift the singular values by a constant, positive
factor α, i.e.

d+1∑
j=1

(σ2
j + α)vj〈vj , wα〉 . (2.14)

Reverting back from (2.14) to the matrix-vector-multiplication representation, we have effectively
modified the normal equation to (

X>X + αI
)
wα = X>y , (2.15)

where I ∈ {0, 1}(d+1)×(d+1) denotes the identity matrix. The nice thing about X>X + αI is that
its condition number is κ(X>X + αI) =

√
(σ2

1 + α)/(σ2
d+1 + α), instead of κ(X>X) = σ1/σd+1.

22 2.5. MODEL SELECTION

If we have a matrix X>X with σ1 =
√

2 and σd+1 = 1/
√

2000000 as in the previous section for
example, we have a large condition number of κ = 2000. If we consider (2.15) instead of (2.12)
for α = 1, we observe κ(X>X + αI) ≈

√
3� 2000 = κ(X>X). As a consequence, any worst-case

error amplification for the ridge regression is much smaller, at the cost of potentially altering the
original problem dramatically. One thing that is also not clear is how to choose the parameter
α; we will address this question in the next section. Before we do so, we want to present an
alternative characterisation of (2.15).

Theorem 2.2 (Ridge regression). The solution wα of (2.15) is the unique solution of the optimi-
sation problem

wα = arg min
w∈Rd+1

{
1

2
‖Xw − y‖2 +

α

2
‖w‖2

}
. (2.16)

Proof. This proof is left as an exercise.

The beauty of formulation (2.16) is that we immediately see that we still try to minimise
the mean-squared error, but at the same time also ensure that the squared norm of the weights
does not become too large. Both goals have to be balanced with a reasonable choice of α. We
discuss this choice in the next section. Note that Problem (2.16) is known as ridge regression in
the context of machine learning and Tikhonov regularisation in the context of inverse & ill-posed
problems. The parameter α is known as the regularisation parameter. In the following section we
want to investigate how to choose hyperparameters such as the regularisation parameter in some
optimal way.

2.5 Model selection

Generally speaking, the major goal in most machine learning problems is to approximate (or
interpolate) an unknown function f̂ : Rn → Rm for a given set of data points sampled from an
unknown distribution D. The assumption that we are in a supervised learning setting implies that
we sample corresponding pairs (x, y) of input and output data points. The goal of supervised
machine learning is then to find f̂ such that it minimises the population risk, expected risk or
expected error, which is defined as

E(f) := Ex,y [`(f(x), y)] , (2.17a)

=

∫
(x,y)∈D

`(f(x), y)ρ(x, y) dx dy . (2.17b)

Here ` : Rm×Rm → R is a so-called loss function that measures the difference between f(x) and
y, while ρ : D → R is the unknown joint probability density function. Note that the latter implies

ρ(x, y) ≥ 0 a.e. and
∫

(x,y)∈D
ρ(x, y) dx dy = 1 .

The key problem with computing the population risk E, let alone minimise it, is that we do not
have access to it as we do not know ρ. In practice, all we can do is to draw |S| i.i.d. samples from
D and consider minimising the empirical risk

LS(f) :=
1

|S]

∑
(xi,yi)∈S

`(f(xi), yi) (2.18)

CHAPTER 2. SUPERVISED LEARNING 23

instead. Here |S| denotes the cardinality of the set S, respectively the number of elements of S.
The difference of (2.17) and (2.18) is known as the generalisation error

GS(f) = E(f)− LS(f) ,

= Ex,y [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

`(f(xi), yi) .

Note that we have defined f̂ as the function that minimises (2.17), i.e.

f̂ = arg min
f∈F

E(x,y)∈D [`(f(x), y)] ,

where F denotes some suitable function space. Now we assume that we want to approximate f̂
with a parametric function fwt , whose parameters wt are computed by minimising the empirical
risk on a set of data points St that are sampled from the distribution D; we will refer to this set
of points as the training set. The empirical risk for this function over the set St is then known as
the training error, which reads

LSt(fwt) =
1

|St|
∑

(xi,yi)∈St

`(fwt(xi), yi) ,

and we have fwt with wt defined as

wt := arg min
w∈Rd+1

LSt(fw) .

If we sample a different set of data points from the same distribution D and denote this set as the
validation set or test set Sv, then we can define the validation error

LSv(fwt) =
1

|Sv|
∑

(xi,yi)∈Sv

`(fwt(xi), yi) .

The validation error is of particular interest, as it approximates the population risk in expectation.
An algorithm or method that aims at approximating f̂ via a parametric function fwt is said to
generalise, if the generalisation error GSv converges to zero if the number of samples converges
to infinity, i.e lim|Sv |→∞GSv(fwt) = 0. Since E cannot be computed, the generalisation error
cannot be computed either. Instead, the goal of research in statistical learning is to bound the
generalisation error in probability.

Example 2.1 (Ridge regression). Suppose we have collected a set of samples and use them as our
training dataset St := {(xi, yi) ∈ D | i ∈ {1, . . . , s}}. In linear ridge regression, we recall that the
idea is to approximate f̂ via fwt(x) := 〈φ(x), wt〉, where the weights wt are computed via

wt = arg min
w∈Rd+1

{
1

2|St|

s∑
i=1

|〈φ(xi), w〉 − yi|2 +
α

2
‖w‖2

}
.

Here, φ : Rm → Rd+1 is a the data-augmentation map that we had introduced earlier and α > 0
is the regularisation parameter. We can then compute the validation error on a set of different
samples Sv := {(xi, yi) ∈ D \ St | i ∈ {1, . . . , s}} via

LSv(fwt) = LSv(〈φ(xi), wt〉) =
1

2|Sv|
∑

(xi,yi)∈Sv

(〈φ(xi), wt〉 − yi)2 .

24 2.6. BIAS-VARIANCE DECOMPOSITION

Choosing an optimal regularisation parameter α̂ in terms of the validation error can then be
formulated as the bilevel optimisation problem

α̂ = arg min
α≥0

LSv(〈φ(xi), wt〉) subject to wt = arg min
w∈Rd+1

{
1

2s

s∑
i=1

|〈φ(xi), w〉 − yi|2 +
α

2
‖w‖2

}
.

(2.19)

In practice, this hyperparameter α̂ is often determined by applying a grid-search strategy to
approximately solve (2.19).

In the following section we will further analyse the validation error for a new sample in expec-
tation over all possible training sets in the context of ` being the mean-squared error function.

2.6 Bias-variance decomposition

Following up on the previous section, we now assume the abstract data generation model

yε = f̂(x) + ε ,

where f̂ is some unknown, deterministic function mapping inputs x onto outputs y. We assume
that the outputs yε that we measure are y = f̂(x) plus a random variable ε drawn from some
distribution Dε with zero expectation, and variance σ2, i.e.

Eε [ε] = 0 and Varε[ε] = σ2 .

One can easily verify that this implies

Eε[yε] = Eε[f̂(x)] = f̂(x) and Varε(yε) = σ2

in particular. Further, we assume that each pair (x, yε) is a sample from an unknown distribution
D and that we have collected a finite number of samples from this distribution in each set St.
Given a parametrised prediction function fwt based on one set St, we want to investigate the
expected squared error of the difference of yε = f̂(x) + ε and fwt at a specific pair of points (x̃, ỹ).
Hence, we investigate

Et,ε
[(
f̂(x̃) + ε− fwt(x̃)

)2
]
,

where Et denotes the expectation over the sets St, while x̃ is a new sample outside of the training
set. We have also dropped the factor 1/2 for notational convenience. In the following, we want to
show that we can split this expectation into three important components: the so-called bias, the

CHAPTER 2. SUPERVISED LEARNING 25

variance and the noise variance. In particular, we observe

Et,ε
[(
f̂(x̃) + ε− fwt(x̃)

)2
]
,

= Et,ε
[
ε2 + 2 ε

(
f̂(x̃)− fwt(x̃)

)
+
(
f̂(x̃)− fwt(x̃)

)2
]
,

= Varε[ε] + Et
[
2Eε[ε]

(
f̂(x̃)− fwt(x̃)

)]
+ Et

[(
f̂(x̃)− fwt(x̃)

)2
]
,

= σ2 + Et
[(
f̂(x̃)− fwt(x̃)

)2
]
,

= σ2 + Et
[(
f̂(x̃)− Et [fwt(x̃)] + Et [fwt(x̃)]− fwt(x̃)

)2
]
,

= σ2 + Et
[(
f̂(x̃)− Et [fwt(x̃)]

)2
]

+ Et
[
(Et [fwt(x̃)]− fwt(x̃))2

]
,

= σ2 +
(
f̂(x̃)− Et [fwt(x̃)]

)2
+ Et

[
(Et [fwt(x̃)]− fwt(x̃))2

]
,

= σ2 + Biast [fwt(x̃)]2 + Vart [fwt(x̃)] ,

for

σ2 := Varε[ε] ,

Biast [fwt(x̃)] := Et [fwt(x̃)]− f̂(x̃) ,

Vart [fwt(x̃)] = Et
[
(fwt(x̃)− Et [fwt(x̃)])2

]
.

Intuitively, the noise variance is an irreducible error in the measurements, the bias refers to a
systematic model error, while the variance of a learning method indicates how much it will move
around its mean. If we for example try to approximate a nonlinear function f̂ with a linear function
fwt , we will inevitably observe a systematic bias of our model fit. In the previous lecture we referred
to this phenomenon as underfitting. If we try to fit a fwt to even the smallest fluctuation of f̂ , we
observe the phenomenon of overfitting.

2.7 The LASSO

In Section 2.4.1 we have introduced the ridge regression model as a way to deal with ill-conditioned
regression problems. In the previous two sections we have further explained how ridge regression
can be used to prevent overfitting of a model function. In Theorem 2.2 we have characterised the
ridge regression problem as an optimisation problem of the form

wα = arg min
w∈Rd+1

{
1

2
‖Φ(X)w − y‖2 +

α

2
‖w‖2

}
.

In this section we want to replace the squared Euclidean norm regularisation term in (2.16) with
a one-norm, i.e.

wα = arg min
w∈Rd+1

{
1

2
‖Φ(X)w − y‖2 + α‖w‖1

}
, (2.20)

26 2.7. THE LASSO

with ‖w‖1 :=
∑d

j=0 |wj |. The motivation behind using the one-norm instead of the squared
Euclidean lies in recovering simpler weights. Simple in this context means sparse, i.e. that we
only want some coefficients of wα to be non-zero while most coefficients are in fact zero. If we
think of polynomial regression as an example, we could think of fitting a polynomial with a very
high degree. Without knowing which coefficients of a polynomial should be relevant, we could
potentially use the minimisation problem in Equation (2.20) to recover a weight vector with only
a few non-zero entries. Intuitively, we can prevent overfitting this way, and we do not have to limit
the degree in advance in order to do so. A regression problem of the form of (2.20) is known as the
Least Absolute Shrinkage and Selection Operator (LASSO). Before we discuss how to solve (2.20)
computationally, we want to introduce a very basic and popular method for smooth optimisation,
known as gradient descent.

2.7.1 Gradient descent

Gradient descent is an iterative procedure that aims at minimising general, differentiable functions
E. Gradient descent is of the form

wk+1 = wk − τ∇E(wk) , (2.21)

for some energy E, an initial value w0 ∈ Rn and a step-size parameter τ > 0. In case of E(w) =
1
2s‖Xw − y‖

2 for example, gradient descent reads

wk+1 = wk − τ

s
X>

(
Xwk − y

)
,

=
(
I − τ

s
X>X

)
wk +

τ

s
X>y . (2.22)

The advantage of iteratively solving (2.22) is that we only need to compute matrix multiplications
and basic arithmetic operations that are reasonably cheap. Also, with an algorithm like (2.21)
we can address minimisation problems more general than minimising the MSE, which is going
to be useful for the LASSO problem (2.20). On the downside, we yet have to determine when
and under which conditions (2.21) really converges to a solution of the minimisation problem
ŵ = arg minw∈Rn E(w) and how quickly it converges to that solution. For this, we rewrite Equation
(2.21) to

wk+1 = arg min
w∈Rn

{
E(wk) + 〈∇E(wk), w〉+

1

2τ
‖w − wk‖2

}
,

= arg min
w∈Rn

{
E(w) +

1

2τ
‖w − wk‖2 − E(w) + E(wk) + 〈∇E(wk), w − wk〉

}
= arg min

w∈Rn

{
E(w) +

1

2τ
‖w − wk‖2 −DE(w,wk)

}
.

The objective function Lk(w) := 〈∇E(wk), w〉 + 1
2τ ‖w − w

k‖2 is convex and differentiable with
gradient ∇L(w) = ∇E(wk) + 1

τ (w − wk). Hence, the global minimiser can be determined via
∇L(wk+1) = 0, which yields (2.21). Gradient descent is summarised in Algorithm 1. The questions
that we need to ask ourselves now are the following: does Algorithm 1 converge to a minimiser
of the objective function E and if yes, under what conditions does it converge? The following
definition will come in handy for answering this question.

CHAPTER 2. SUPERVISED LEARNING 27

Algorithm 1 Gradient descent
Specify: Differentiable, convex function E : Rn → R, step-size τ > 0, index K
Initialise: w0 ∈ Rn
Iterate:
1: for k = 0, . . . ,K − 1 do
2: wk+1 = wk − τ∇E(wk)
3: end for
return wK .

Definition 2.7 (L-smooth functions). A continuously differentiable function E : C ⊂ Rn → R is
called L-smooth if

‖∇E(w)−∇E(v)‖ ≤ L‖w − v‖

is guaranteed for all w, v ∈ C and a positive constant L > 0.

Theorem 2.3 (Convergence of Algorithm 1). Let E : C ⊂ Rn → R be a convex and 1/τ -smooth
function in the sense of Definition 2.7. Suppose ŵ denotes a global minimiser of E, i.e. ŵ =
arg minw∈Rn E(w). Then the iterates of Algorithm 1 satisfy

E(wk)− E(ŵ) ≤ C

k
, (2.23)

for a constant C > 0 that is independent of k. As a direct consequence, we observe limk→∞E(wk) =
E(ŵ).

As usual, the proof of this statement is non-examinable and is left to the interested reader. In
order to prove Theorem 2.3 we need to verify the following two lemmas first. The first one verifies
a convenient property of smooth functions E: if E is 1/τ -smooth, then a function J := 1

2τ ‖·‖
2−E

is automatically convex.

Lemma 2.3. Let E : C → R be a 1/τ -smooth function over a convex domain C ⊂ Rn, for a
positive constant τ > 0. Then J : C → R, with

J(w) :=
1

2τ
‖w‖2 − E(w) ,

is a convex function, for all w ∈ C.

Proof (non-examinable): As E is 1/τ -smooth we conclude

‖∇E(w)−∇E(v)‖ ≤ 1

τ
‖w − v‖ .

Multiplying both sides with ‖w − v‖ and making use of the Cauchy-Schwartz inequality 〈x, y〉 ≤
‖x‖‖y‖ leaves us with

〈∇E(w)−∇E(v), w − v〉 ≤ 1

τ
‖w − v‖2 =

1

τ
〈w − v, w − v〉 .

Subtracting the left-hand-side from the right-hand-side yields the inequality

0 ≤
〈

1

τ
w −∇E(w)−

(
1

τ
v −∇E(v)

)
, w − v

〉
= DJ(w, v) +DJ(v, w) ,

28 2.7. THE LASSO

for J := 1
2τ ‖ · ‖

2 − E. From DJ(w, v) + DJ(v, w) ≥ 0 for all u, v we can conclude DJ(y + t(x −
y), y) +DJ(y, y + t(x− y)) ≥ 0 for all x, y and t ∈ [0, 1], which implies

〈∇J(y + t(x− y))−∇J(y), x− y〉 ≥ 0 . (2.24)

If we define

f(t) := J(y + t(x− y)) ,

we observe f ′(t) = 〈∇J(y+ t(x− y)), x− y〉 and can therefore conclude f ′(t) ≥ f ′(0) from (2.24).
Hence, we can estimate

J(x) = f(1) = f(0) +

∫ 1

0
f ′(t) dt ≥ f(0) + f ′(0)

= J(y)− 〈∇J(y), x− y〉 ,

which is true for all x, y. Hence, DJ(w, v) + DJ(v, w) ≥ 0 for all arguments already implies
DJ(u, v) ≥ 0 for all arguments u, v. Corollary 2.1 then implies convexity of J .

Before we continue with the actual proof of Theorem 2.3 we also verify the following interme-
diate result.

Lemma 2.4. Let the same assumptions hold true as in Theorem 2.3 and suppose w∗ is defined as
w∗ := arg minw∈Rn {E(w) +DJ(w,w)} for some w ∈ Rn. Then the identity

E(w∗) +DE(w,w∗) +DJ(w,w∗) +DJ(w∗, w) = E(w) +DJ(w,w)

holds for any w ∈ Rn. Here J : Rn → R is defined as J(w) := 1
2τ ‖w‖

2 − E(w) and DE and DJ

denote the Bregman distances with respect to the functions E, respectively J .

Proof (non-examinable): As a consequence of Lemma 2.1 we can characterise w∗ via the optimality
condition

0 = ∇E(w∗) +∇J(w∗)−∇J(w) .

Taking an inner product with w∗ − w then yields

0 = −〈∇E(w∗), w − w∗〉 − 〈∇J(w∗)−∇J(w), w − w∗〉 ,
= DE(w,w∗)− E(w) + E(w∗)− 〈∇J(w∗), w − w∗〉+ 〈∇J(w), w − w∗〉 ,
= DE(w,w∗)− E(w) + E(w∗) +DJ(w,w∗)− J(w) + J(w∗) + 〈∇J(w), w − w∗〉 ,
= DE(w,w∗)− E(w) + E(w∗) +DJ(w,w∗)− J(w) + J(w∗) + 〈∇J(w), w − w + w − w∗〉 ,
= DE(w,w∗)− E(w) + E(w∗) +DJ(w,w∗)−DJ(w,w) +DJ(w∗, w) ,

which concludes the proof.

Proof of Theorem 2.3 (non-examinable). Applying Lemma 2.4 for w∗ = wk+1, w = wk and w = ŵ
yields

E(ŵ) +DJ(ŵ, wk) = E(wk+1) +DE(ŵ, wk+1) +DJ(ŵ, wk+1) +DJ(wk+1, wk) ,

≥ E(wk+1) +DJ(ŵ, wk+1) ,

CHAPTER 2. SUPERVISED LEARNING 29

due to the convexity of E and J that implies DE(ŵ, wk+1) ≥ 0 and DJ(wk+1, wk) ≥ 0 because of
Corollary 2.1. Hence, we observe

E(wk+1)− E(ŵ) ≤ DJ(ŵ, wk)−DJ(ŵ, wk+1) .

Summing from k = 0, . . . ,K − 1 then leads to

K−1∑
k=0

E(wk+1)−KE(ŵ) ≤ DJ(ŵ, w0)−DJ(ŵ, wK) . (2.25)

Another application of Lemma 2.4 for w∗ = wk+1, w = wk and w = wk gives us

E(wk) +DJ(wk, wk)︸ ︷︷ ︸
=0

= E(wk+1) +DE(wk, wk+1) +DJ(wk, wk+1) +DJ(wk+1, wk) ,

≥ E(wk+1) ,

again due to the convexity of E and J that implies DE(wk, wk+1) ≥ 0, DJ(wk, wk+1) ≥ 0 and
DJ(wk+1, wk) ≥ 0. Hence, we can conclude E(wk+1) ≤ E(wk) for all k = 0, . . . ,K − 1, and in
particular KE(wK) ≤

∑K−1
k=0 E(wk+1). Inserting this inequality in (2.25) implies (2.23).

Since J is convex we can further estimate

E(wK) ≤ E(ŵ) +
DJ(ŵ, w0)

K

for a positive constant C := DJ(ŵ, w0) independent of K, which allows us to conclude both
limK→∞E(wK) = E(ŵ) and the proof.

Example 2.2 (Convergent gradient descent for minimising the MSE). For the MSE function
E(w) := 1

2s‖Xw − y‖
2 we have already verified ∇E(w) = 1

sX
>(Xw − y). We further verify

‖∇E(w)−∇E(v)‖ =
1

s
‖X>X(w − v)‖ ≤ ‖X

>X‖
s

‖w − v‖ =
‖X‖2

s
‖w − v‖ ,

where ‖X‖ denotes the operator norm of X (based on the Euclidean vector norm). Hence, E is
1/τ -smooth for τ ≤ s/‖X‖2. As a consequence of Theorem 2.3 we know that gradient descent,
respectively Algorithm 1, applied to the MSE is convergent for any step-size τ with τ ≤ s/‖X‖2.

Remark 2.3. We want to emphasise that Theorem 2.3 not only guarantees convergence of Algo-
rithm 1, but also provides a rate of convergence. This rate is 1/k, and often this rate of convergence
is highlighted with the big O-notation, i.e.

E(wk)− E(ŵ) = O
(

1

k

)
.

This means that the left-hand-side is proportional to 1/k. Suppose DJ(ŵ, w0) = 10, then we
require approximately k = 1000 iterations to ensure E(wk)−E(ŵ) ≤ 10−2 according to Theorem
2.3. Next semester in advanced machine learning we want to address the question of whether
we can have a 1/k2-convergence rate (or faster). To illustrate the gain in convergence speed, we
would only require k = 32 instead of k = 1000 iterations in order to get the same accuracy, i.e.
E(wK)− E(ŵ) ≤ 10−2.

30 2.7. THE LASSO

2.7.2 Gradient descent and the LASSO

In this section we want to discuss how we can use gradient descent to solve the LASSO problem
(2.20). The key challenge is the non-differentiability of the one-norm ‖ · ‖1. We therefore have to
make this problem differentiable. We can do this by using the following neat trick. We can rewrite
the modulus-function | · | in the one-norm as

|z| = max
p∈[−1,1]

zp ,

for any arbitrary scalar z ∈ R. We now modify the modulus function by subtracting a multiple of
a quadratic of the additional variable p and define

|z|τ := max
p∈[−1,1]

zp− τ

2
|p|2 , (2.26)

for some scalar parameter τ > 0. A nice thing about this modification is that it has a closed-form
solution that we can compute by computing p̂ = arg maxp∈[−1,1] zp, which reads

p̂ =

1 z > τ
z
τ |z| ≤ τ
−1 z < −τ

,

(left as a coursework exercise) and inserting p̂ into (2.26). This yields

|z|τ =

{
|z| − τ

2 |z| > τ
1
2τ |z|

2 |z| ≤ τ
,

which is also known as the Huber loss. This function is differentiable, and we can replace the
one-norm ‖w‖1 =

∑d
j=0 |wj | in (2.20) with the funtion Hτ (w) =

∑d
j=0 |wj |τ , i.e.

wτα = arg min
w∈Rd+1

{
1

2
‖Φ(X)w − y‖2 + αHτ (w)

}
. (2.27)

Since all terms in Problem (2.27) are differentiable, we can solve (or approximate a solution of)
(2.27) with Algorithm 1. There are obviously a few open questions, such as convexity of the
Huber loss, Lipschitz-continuity of the overall gradient and whether minimisers of (2.27) and
(2.20) coincide, which we won’t address for now. The reason for this is that there is a minor but
powerful modification of gradient descent known as proximal gradient descent or forward-backward
splitting that is much for suitable for the minimisation of problems of the form (2.20).

2.7.3 Proximal gradient descent

Problems like the LASSO are problems where we minimise the sum of two functions. More
precisely, they are of the form

w = arg min
w∈C

{E(w) +R(w)} , (2.28)

where E : Rn → R is a convex and continuously differentiable function, while R : C ⊂ Rn →
R ∪ {∞} is a proper, convex and lower semi-continuous function. Please do not worry too much
about the assumptions on R; these are obviously important from a mathematical point of view

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Proper_convex_function
https://en.wikipedia.org/wiki/Semi-continuity

CHAPTER 2. SUPERVISED LEARNING 31

Algorithm 2 Proximal gradient descent
Specify: Continuously differentiable, convex function E : Rn → R, proper, lower semi-continuous
and convex function R : C ⊂ Rn → R ∪ {∞}, step-size τ > 0, index K
Initialise: w0 ∈ Cn
Iterate:
1: for k = 0, . . . ,K − 1 do
2: wk+1 = (I + τ∂R)−1

(
wk − τ∇E(wk)

)
3: end for
return wK .

but are not really relevant for this module. I have included them for the interested reader, but
you can very well survive this module without knowing what those assumptions mean. As already
mentioned, typical examples of (2.28) include the LASSO problem (2.20), i.e.

w = arg min
w∈Rd+1

{
1

2s
‖Xw − y‖2 + α‖w‖1

}
,

but also other problems such as constrained MSE minimisation, i.e.

w = arg min
w∈C

{
1

2s
‖Xw − y‖2

}
= arg min

w∈Rd+1

{
1

2s
‖Xw − y‖2 + χC(w)

}
,

where χC : Rd+1 → R ∪ {∞} is the characteristic function over the convex set C ⊂ Rd+1, i.e.

χC(w) :=

{
0 w ∈ C
∞ w 6∈ C

.

We aim to minimise (2.28) with a modification of Algorithm 1 of the form

wk+1 = arg min
w∈C

{
E(w) +R(w) +DJ(w,wk)

}
,

again for the function J(w) := 1
2τ ‖w‖

2−E(w). This method yields the so-called proximal gradient
method that reads

wk+1 = arg min
w∈C

{
E(wk) + 〈∇E(wk), w − wk〉+R(w) +

1

2τ
‖w − wk‖2

}
,

= arg min
w∈C

{
E(wk) + 〈∇E(wk), w − wk〉+R(w) +

1

2τ
‖w − wk‖2

}
,

= arg min
w∈C

{
1

2

∥∥∥w − (wk − τ∇E(wk)
)∥∥∥2

+ τR(w)

}
,

=: (I + τ∂R)−1
(
wk − τ∇E(wk)

)
.

and the short-hand notation

(I + τ∂R)−1(z) := arg min
x∈Rn

{
1

2
‖x− z‖2 + τR(x)

}
.

https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Characteristic_function_(convex_analysis)
https://en.wikipedia.org/wiki/Proximal_gradient_method
https://en.wikipedia.org/wiki/Proximal_gradient_method

32 2.8. DEEP LEARNING

The mapping (I + τ∂R)−1 : Rn → C is known as the proximal operator or proximal map with
respect to R, and the success of the proximal gradient method relies on the simplicity of this map.
In the examples mentioned above, the proximal maps read

(
(I + τα∂‖ · ‖1)−1(z)

)
j

=

zj − τα zj > τα

0 |zj | ≤ τα
zj + τα zj < −τα

and (I + τα∂χC)
−1(z) = projC(z) ,

where projC denotes the orthogonal projector onto the set C. If C := {x ∈ R |x ≥ 0} for example,
then projC(z) = max(0, z) We have summarised the proximal gradient descent in Algorithm 2.
Convergence can be deduced in very similar fashion as for gradient descent, but we leave this for
the advanced machine learning module in the next semester where this becomes more relevant.

2.8 Deep learning

So far, all supervised machine learning models that we have considered were regression models
that were either linear or nonlinear in the input arguments x but linear in the weights w. We
now want to shift our focus to a particular class of models that are nonlinear in both the input
arguments and the weights: so-called deep neural networks.

Deep neural networks

In mathematical terms, a deep neural network is simply a function that is a composition of simple,
parametrised functions and potentially many of them, i.e.

fw(x) := ϕL (ϕL−1 (· · ·ϕ1 (ϕ0(x,w1), w2) · · · , wL−1) , wL) . (2.29)

Here {ϕl}Ll=1 is a family of L so-called activation functions that are parametrised with weights
w := {wl}Ll=1. To be more precise, (2.29) is a deep neural network with L layers.
Typical activation functions are affine-linear transformations, i.e.

ϕ(x,W, b) := W>x+ b .

In terms of terminology, W ∈ Rn×m is a weight matrix and b ∈ Rm×1 is the bias vector. This way
ϕ : Rn → Rm maps inputs x ∈ Rn onto outputs ϕ(x) ∈ Rm.
An example for a nonlinear activation function is the Heaviside function

ϕ(x) = H(x) :=

{
1 x ≥ 0

0 x < 0
.

Together with an affine-linear transformation, Heaviside functions paved the way for the definition
of the perceptron, a simplified model loosely based on a neuron.

Example 2.3 (Perceptron). An artificial neuron known as perceptron is defined as the nonlinear
activation function

ϕ(x,w, b) := H(w>x+ b) =

{
1 w>x ≥ −b
0 w>x < −b

,

https://en.wikipedia.org/wiki/Proximal_operator
https://en.wikipedia.org/wiki/Projection_(mathematics)

CHAPTER 2. SUPERVISED LEARNING 33

for a weight vector w ∈ Rn and a bias b ∈ R. Note that this function is a composition and itself
could already be seen as two-layer neural network of the form

f(x,w, b) = ϕ1(ϕ0(x,w, b))

with ϕ1(x) := H(x) and ϕ0(x,w, b) := w>x+ b.

Another popular activation function is the so-called rectifier ϕ : R→ R≥0, defined as

ϕ(x) := max(0, x) .

Simple activation functions such as the Heaviside function or the rectifier can easily be extended
to activation functions operating on vectors x ∈ Rn by defining ϕ : Rn → Rn with

ϕ(x) := (ϕ(x1), ϕ(x2), . . . , ϕ(xn))> .

We will often abuse notation and use the same notation for the scalar and vector-valued variants
of such simple activation functions. When we write a vector-valued rectifier ϕ : Rn → Rn as

ϕ(x) = max(0, x) ,

we mean ϕ(x) = (max(0, x1),max(0, x2), . . . ,max(0, xn)) but write max(x, 0) for the sake of no-
tational simplicity.

In combination with the affine-linear transformations they form what is known as Rectified
Linear Unit (ReLU), i.e.

ϕ(x,W, b) := max
(

0, W>x+ b
)
,

where we have used the simplified notation for the vector-valued rectifier.

Example 2.4 (ReLU neural networks). Based on the previous considerations, an L-layer neural
network with ReLU activation functions has the form

ϕ(x,w) = max
(

0, W>L max
(

0, W>L−1 max
(
. . .max

(
0,W>1 x+ b1

)
. . .
)

+ bL−1

)
+ bL

)
,

or

ϕ(x,w) = max
(

0,W>L x
L + bL

)
,

for

xl :=

{
max

(
0,W>l x

l−1 + bl
)

l ∈ {2, . . . , L}
max

(
0,W>1 x+ b1

)
l = 1

.

Here the parameters w are defined as the collection of all weight matrices and bias vectors, i.e.
w =

{
{Wl}Ll=1, {bl}Ll=1

}
.

One last notable activation function that we want to discuss is the softmax activation function,
which is defined as ϕ : Rn → Rn with

ϕ(x1, . . . , xn) =

(
exp(x1)∑n
j=1 exp(xj)

, . . . ,
exp(xn)∑n
j=1 exp(xj)

)>
.

34 2.8. DEEP LEARNING

This activation function is extremely useful as it allows us to map arguments onto the (probability)
simplex, i.e. ϕ(x1, . . . , xn)i ≥ 0 for all i ∈ {1, . . . , n} and

∑
i=1 ϕ(x1, . . . , xn)i = 1. The name

stems from the fact that this activation function can be seen as a smooth approximation of the
argmax function.
A general nonlinear regression model with deep neural networks then simply reads as minimising
the empirical risk (2.18) of the form

wt = arg min
w∈Rn

{
1

s

s∑
i=1

`i(fw(xi), yi)

}
, (2.30)

for a family of loss functions {`i}si=1 with `i : Rn → Rm for each i ∈ {1, . . . , s}. As for the previous
examples we can for instance choose `i(z) := 1

2 |z − yi|
2 in order to minimise the mean-squared

error, but with a deep neural network as the model function, i.e.

wt = arg min
w∈Rn

{
1

2s

s∑
i=1

|fw(xi)− yi|2
}
,

= arg min
w∈Rn

{
1

2s

s∑
i=1

|xLi − yi|2
}
,

for

xli = ϕl(x
l−1
i , wl) , for ∀i ∈ {1, . . . , s}, ∀l ∈ {1, . . . , L} ,

assuming x0
i = xi for all i ∈ {1, . . . , s}. Other choices such as the mean absolute error can certainly

be used as well, and some will also be explored next semester. An important question that we
want to address in the following section is the optimisation of the parameters wt, also referred to
as training or empirical risk minimisation as discussed in Section 2.5.

2.8.1 Training deep learning models

In the previous section we learned that training the parameters of a deep neural network is equiv-
alent to minimising objective functions of the form (2.30). In principle, there is no reason why we
cannot use algorithms such as gradient descent (Algorithm 1) and modifications such as stochastic
gradient descent or subgradient descent that we will learn more about in the next semester. How-
ever, the key difference is that the objective in (2.30) is in general not a convex function anymore.
This means that the convergence results that we have derived in earlier sections do not apply. This
does not mean that there do not exist other conditions that could guarantee convergence, but this
is beyond the scope of this module. We nevertheless will apply the same algorithms, keeping in
mind that we do not necessarily have convergence guarantees as in the convex setting.

If we have a differentiable deep neural network with differentiable activation functions, we
can (try to) train a deep neural network simply by minimising (2.30) via gradient descent, i.e.
Algorithm 1. In order to do so, we are required to compute the gradient of the objective function
w.r.t. the network parameters w. This can be done via backpropagation, which is a fancy name
for applying the chain rule to the particular network architecture.
In the following, we focus on architectures of the form

xli = σ(zli) , (2.31a)

zli = W>l x
l−1
i + bl , (2.31b)

CHAPTER 2. SUPERVISED LEARNING 35

for x0
i = xi, nonlinear activation functions σ and all i ∈ {1, . . . , s} and l ∈ {1, . . . , L} and the

empirical risk minimisation problem for the empirical risk function

L(W1, . . . ,WL, b1, . . . , bL) =
1

s

s∑
i=1

`(xLi , yi) . (2.32)

Other backpropagation rules for more general architectures can be derived in similar fashion. The
following lemma characterises the partial derivatives of the empirical risk function with respect to
the parameters.

Lemma 2.5. When we define the quantity

δlj :=
∂L

∂xlj

for j ∈ {1, . . . , nl} and l ∈ {2, . . . , L}, we can show that the partial derivatives of L with respect
to the weights and biases satisfy

δli =

{
σ′(zLi)� 1

s∇1`(x
L
i , yi) l = L

σ′(zli)�Wl+1δ
l+1 l ∈ {1, . . . , L− 1}

,

∂L

∂blj
= δlj ,

∂L

∂wljk
= δljx

l−1
k .

Here � denotes the Hadamard product, which is simply a pointwise multiplication, and ∇1` is the
gradient of ` with respect to the first argument.

Theorem 2.4 (Backpropagation). The gradient of the function (2.32) subject to the neural network
constraint (2.31) with respect to the parameters {Wl}Ll=1 and {bl}Ll=1 can be computed via the
backpropagation Algorithm 3.

As a consequence, we can train the network parameters via Algorithm 1 aka gradient descent
where we use the gradient that we have computed with Algorithm 3.

2.9 Classification

For the remainder of this chapter we move on from regression problems to classification problems.
Classification is the task of associating a certain class from a number of pre-defined classes to the
input of a function. Suppose we have a set of s input and output samples {(xi, yi)}si=1, then the
goal of classification is to find a function f : Rd → {C1, C2, . . . , Cn} that approximately satisfies

f(xi) ≈ yi ,

for all i ∈ {1, . . . , s}. You may say: hold on, this looks exactly like the general supervised learning
formulation that we have introduced in (2.1) and this is correct! The only difference compared
to supervised regression is that the function f no longer maps onto continuous values, but onto
a discrete set of values {C1, C2, . . . , Cn}. Here {Cj}nj=1 are the so-called class labels that are
numerical values associated with the n individual classes. Note that each yi has to take on one of

https://en.wikipedia.org/wiki/Statistical_classification

36 2.9. CLASSIFICATION

Algorithm 3 Backpropagation
Specify: Activation function σ, samples {(xi, yi)}si=1, weight and bias dimensions, and no. of
layers L
Iterate:
1: for i = 1, . . . , s do
2: for l = 1, . . . , L do
3: Forward pass: compute zli = W>l x

l−1
i + bl

4: Forward pass: compute xli = σ(zli)
5: end for
6: end for
7: for i = 1, . . . , s do
8: for l = L, . . . , 1 do

9: Backward pass: compute δli =

{
σ′(zLi)� 1

s∇1`(x
L
i , yi) l = L

σ′(zli)�Wl+1δ
l+1 l ∈ {1, . . . , L− 1}

10: end for
11: end for
12: Partial derivatives: compute ∂L

∂blj
= δlj , for all j ∈ {1, . . . , nl}

13: Partial derivatives: compute ∂L
∂wljk

= δljx
l−1
k , for all j ∈ {1, . . . , nl} and k ∈ {1, . . . , nl−1}.

return {Wl}Ll=1 and {bl}Ll=1.

those values as well, i.e. yi ∈ {C1, . . . , Cn} for all i ∈ {1, . . . , s}. If there are only two classes to
map to, i.e. the range of the function is {C1, C2}, then we speak of a binary classification problem.
For more than two classes we speak of a multiclass classification problem. In the following, we
introduce a very basic classification method known as nearest neighbour classification, discuss its
limitations and then continue to introduce other classification models such as logistic regression
and support vector machines.

2.9.1 Nearest neighbour classification

One of the most simple classification ideas is to classify a new data sample x based on classes
of the K-nearest neighbours of that sample in the training set. We can do this by assigning a
probability to the unknown output label based on the labels of the K nearest neighbours. This
probability is of the form

ρ(y = c |x,K) :=
1

K

∑
l∈NK(x)

ι(yl = c) , (2.33)

with ι defined as

ι(z) :=

{
1 if z is true
0 if z is false

. (2.34)

Here NK denotes the neighbourhood of x, which includes the K nearest neighbours of x. There are
obviously many different ways of measuring distances between data points. One example is to sim-
ply measure the Euclidean distances between data points. In that case the neighbourhood can be
defined asNK(x) :=

{
xi(1), . . . , xi(K)

∣∣ ‖x− xi(j)‖ ≤ ‖x− xl‖ , ∀ l ∈ {1, . . . , s} \ {i(1), . . . , i(K)}
}
.

https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification

CHAPTER 2. SUPERVISED LEARNING 37

The definition (2.34) assigns a probability to the event that a label y equals a class label
c ∈ {C0, . . . , Cn}. This is done by computing the averages among the K nearest neighbours with
identical class label. You can find particular examples in the corresponding video lecture that
accompanies these lecture notes. Once we have computed all probabilities for the different class
labels, we assign the class label with the highest probability to the output of our classifier f , i.e.

f(x) := arg max
c∈{C0,C1,...,Cn}

ρ(y = c |x,K) . (2.35)

The entire strategy is known as the K-nearest neighbours classification. The number of neighbours
K is a hyperparameter that has to be determined with model selection strategies such a cross
validation.

In the following we want to shed some light on why nearest neighbour classification works well
for lower dimensional problems (small d) but fails to deliver meaningful results when the dimension
d increases.

The curse of dimensionality

Nearest neighbour classification is a very simple classification strategy that, unfortunately, falls
victim to the so-called curse of dimensionality . In the context of supervised machine learning, the
curse of dimensionality usually takes the following form.

(a) “Generalising correctly becomes exponentially harder as the dimensionality grows because
fixed-size training sets cover a dwindling fraction of the input space.”

(b) In high-dimensions, data-points are far from each other. Consequently, “as the dimensionality
increases, the choice of nearest neighbour becomes effectively random.”

These quotes are taken from Pedro Domingos review article "A few useful things to know about
machine learning". In the following, we want to dissect what those claims mean mathematically.
For the first claim, imagine that we have m data inputs {xi}mi=1 that all lie in the d-dimensional
unit cube [0, 1]d with a total volume of 1d = 1. Now we consider a sub-cube [a, a+r]d ⊂ [0, 1]d with
0 ≤ a and a+ r ≤ 1 with volume rd ≤ 1. This sub-cube can be seen as our training set, containing
s training samples. The question we want to address here is the following: how large does this
cube have to be in order to cover a certain fraction α of the m data samples (in expectation)?
In other words: how do we need to choose the length r of the sub-cube such that α = rd? The
straight-forward answer to this question is

r = d
√
α .

If we are in a d = 10 dimensional space for example, covering only α = 1% of the data already
requires a cube with length r ≈ 0.63. To cover α = 10% of the data in the overall cube, a length
of r ≈ 0.8 is required. In other words, for a fixed sub-cube with fixed length r < 1 increasing the
dimension d dramatically reduces the fraction of data samples that the sub-cube covers.

For the second claim, we consider the d-dimensional unit cube again, but this time our sub-
cube is located around the centre point (1

2 ,
1
2 , . . . ,

1
2), i.e. we have [(1 − r)/2, (1 + r)/2]d ⊂ [0, 1]d

with 0 ≤ r ≤ 1. Suppose m input samples {xi}si=1 are uniformly distributed in the cube [0, 1]d.
What is the chance that a random sample is in the overall cube [0, 1]d but not in the sub-cube
[(1− r)/2, (1 + r)/2]d? This chance is simply 1− rd. Considering m i.i.d. samples, the chance that
none of these m samples is in the sub-cube then becomes(

1− rd
)m

.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://dl.acm.org/doi/pdf/10.1145/2347736.2347755?casa_token=sGtzNFp1cHYAAAAA:onsZCZ1PTbUltDJ7FPC9AXs2jnObYmJJLjOePfTuBbwe8xH3dqj2LxvvUKD2RkKxAxBfrafBr0b7XA
https://dl.acm.org/doi/pdf/10.1145/2347736.2347755?casa_token=sGtzNFp1cHYAAAAA:onsZCZ1PTbUltDJ7FPC9AXs2jnObYmJJLjOePfTuBbwe8xH3dqj2LxvvUKD2RkKxAxBfrafBr0b7XA

38 2.9. CLASSIFICATION

For a fixed probability ρ, we can solve this equation for r, i.e.

r = d

√
1− m

√
ρ .

To have a probability of 50% (which means ρ = 0.5) that none of m = 500 samples in a d = 10
dimensional space is in the sub-cube, the length of the sub-cube only has to be r ≈ 0.52. Again,
keeping r fixed and increasing the dimension d will quickly increase the probability ρ to values
close to 100%, rendering the concept of nearest neighbours useless in higher dimensions.

All these considerations tell us that the K-nearest neighbours classification strategy suffers
from the curse of dimensionality, which is why we have to consider other classification strategies
that do not rely on the concept of neighbours. In the following sections we will consider three
alternative classification strategies.

2.9.2 Logistic regression

One could think of solving classification problems with the same tools that we have used for tackling
regression problems, i.e. mean-squared-error regression. After all, the only difference is that the
output of the trained prediction function f(x,w) is supposed to be discrete and not continuous,
which we could achieve by thresholding the function output. However, as you find out in the
weekly lecture videos, this strategy is not working in practice, since the mean-squared error is not
really related to the objective of minimising the number of misclassified samples. Starting with
the concept of binary classification, it seems reasonable to transform the prediction f(x,w) into a
probability. In order, to do so, we consider σ(f(x,w)) instef f(x,w), where σ : (−∞,∞)→ [0, 1]
is the so-called logistic function defined as

σ(z) :=
1

1 + e−z
=

ez

1 + ez
. (2.36)

We can then define the following probabilities for the events that the output f(x,w) belongs the
class with class label zero or the class with class label one:

ρ(1|x) := σ(f(x,w)) , (2.37a)
ρ(0|x) := 1− σ(f(x,w)) . (2.37b)

From the definition of σ we instantly observe ρ(1|x) ≥ 0, ρ(0|x) ≥ 0 and ρ(1|x) + ρ(0|x) = 1.
Hence, when we speak of ρ we can indeed speak of a probability. Now assume we have s pairs of
samples {(xi, yi)}si=1 where yi ∈ {0, 1} for all i ∈ {1, . . . , s} that are iid and follow the probability
density function that we have just defined in (2.37). The corresponding likelihood then reads

ρ (y |X,w) =

s∏
i=1

ρ(yi|xi) , (2.38)

where X and y are abbreviations of the matrix and vector that we obtain from the samples {yi}si=1

and {xi}si=1. Note that we can rewrite (2.38) as

ρ (y |X,w) =
∏

{i | yi=1}

ρ(yi = 1|xi)
∏

{i | yi=0}

ρ(yi = 0|xi) ,

=

s∏
i=1

σ(f(xi, w))yi (1− σ(f(xi, w))1−yi .

https://en.wikipedia.org/wiki/Logistic_function

CHAPTER 2. SUPERVISED LEARNING 39

As in the regression case with the normal distribution, we can obtain parameters ŵ that maximise
the likelihood (2.38) by minimising the negative log-likelihood, i.e.

ŵ = arg min
w

{− log (ρ (y |X,w))} ,

= arg min
w

{
− log

(
s∏
i=1

σ(f(xi, w))yi (1− σ(f(xi, w)))1−yi

)}
,

= arg min
w

{
−

s∑
i=1

[yi log (σ(f(xi, w))) + (1− yi) log ((1− σ(f(xi, w))))]

}
,

= arg min
w

{
s∑
i=1

[log (1 + exp (f(xi, w)))− yif(xi, w)]

}
.

This alternative form of regression is known as logistic regression as it is based on the logistic
function (2.36). We can choose any model function f – linear or polynomial basis function, or
even a neural network – that we like, as long as it maps onto the real numbers. To determine
a unique minimiser, a model linear with respect to the weights w has its advantages, as we will
discuss later. Before we discuss how to compute an argument that minimises this expression
numerically, we want to discuss how to extend logistic regression to classification problems with
more than two classes first.

In order to derive a logistic regression problem that can deal with more than two classes, we
need to come up with a probability model that can associate the highest probability to the label
that corresponds to the correct class. We can do this with the help of the so-called softmax -
function. Assume for K > 2 classes that we have a model function f(x,w1, . . . , wK) that depends
on multiple weight vectors {wk}Kk=1, and more importantly, that maps onto aK-dimensional vector
rather than a scalar output. Given such a function, we compose it with the softmax function
σ : RK → [0, 1]K that is defined as

σ(z1, z2, . . . , zK)k :=
exp(zk)∑K
j=1 exp(zj)

, ∀ k ∈ {1, . . . ,K} .

We can then associate a probability for each class based on this composition, i.e.

ρ(yi = k |xi, w1, . . . , wK) := σ (f(xi, w1, . . . , wK))k =
exp(f(xi, w1, . . . , wK)k)∑K
j=1 exp(f(xi, w1, . . . , wK)j)

,

for all k ∈ {1, . . . ,K}. By definition of the softmax-function, we observe ρ(yi = k |xi, w1, . . . , wK) ≥
0 for all k ∈ {1, . . . ,K} as well as

∑K
k=1 ρ(yi = k |xi, w1, . . . , wK) = 1; hence, we can talk of ρ as

a probability. We can then proceed as in the binary logistic regression case and define a likelihood
for s data samples {(xi, yi)}si=1 via

ρ(ŷ = y |X,W) :=

s∏
i=1

ρ(ŷi = yi |xi, w1, . . . , wK) ,

for the short-hand notations y = (y1, . . . , ys)
>, X =

(
x1 . . . xs

)> andW =
(
w1 w2 . . . wK

)
.

We can simplify this likelihood to

ρ(ŷ = y |X,W) =
∏

{i | yi =1}

ρ(ŷi = 1 |xi, w1, . . . , wK) · · ·
∏

{i | yi =K}

ρ(ŷi = K |xi, w1, . . . , wK) ;

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Softmax_function

40 2.9. CLASSIFICATION

We can use the indicator function 1yi=k defined as

1yi=k :=

{
1 yi = k

0 otherwise

to further simplify the likelihood to

ρ(ŷ = y |X,W) :=
s∏
i=1

K∏
k=1

ρ(ŷi = k |xi, w1, . . . , wK)1yi=k .

As before, we can maximise this likelihood by choosing the parametersW such that they minimise
the negative log-likelihood, i.e.

Ŵ = arg min
W

− log (ρ(ŷ = y |X,W)) ,

= arg min
W

− log

 s∏
i=1

K∏
j=1

ρ(ŷi = k |xi, w1, . . . , wK)1yi=k

 ,

= arg min
W

−
s∑
i=1

K∑
k=1

1yi=k log (ρ(ŷi = k |xi, w1, . . . , wK)) ,

= arg min
W

−
s∑
i=1

K∑
k=1

1yi=k log

(
exp(f(xi, w1, . . . , wK)k)∑K
j=1 exp(f(xi, w1, . . . , wK)j)

)
,

= arg min
W

s∑
i=1

K∑
k=1

1yi=k

log

 K∑
j=1

exp(f(xi, w1, . . . , wK)j)

− f(xi, w1, . . . , wK)k

 ,

= arg min
W

s∑
i=1

K∑
k=1

1yi=k log

 K∑
j=1

exp(f(xi, w1, . . . , wK)j)

− s∑
i=1

K∑
k=1

1yi=kf(xi, w1, . . . , wK)k ,

= arg min
W

s∑
i=1

log

(
K∑
k=1

exp(f(xi, w1, . . . , wK)k)

)
−

s∑
i=1

K∑
k=1

1yi=kf(xi, w1, . . . , wK)k .

Hence, with the more compact notation f(x,W) we can estimate optimal parameters Ŵ via

Ŵ = arg min
W

s∑
i=1

log

(
K∑
k=1

exp(f(xi,W)k)

)
−

s∑
i=1

K∑
k=1

1yi=kf(xi,W)k .

A typical choice for f based on polynomial augmentation would be

f(x,W) =
(
〈φ(x), w1〉 〈φ(x), w2〉 . . . 〈φ(x), wK〉

)
= φ(x)>W .

If we store all input samples {xi}si=1 in a matrix X =
(
x1 . . . xs

)>, we can write

f(X,W) = Φ(X)W

CHAPTER 2. SUPERVISED LEARNING 41

in matrix form. The multinomial logistic regression problem then reads

Ŵ = arg min
W∈R(1+d)×K

s∑
i=1

log

(
K∑
k=1

exp(〈φ(xi), wk〉)

)
−

s∑
i=1

K∑
k=1

1yi=k〈φ(xi), wk〉 ,

or

Ŵ = arg min
W∈R(1+d)×K

s∑
i=1

log

(
K∑
k=1

exp((Φ(X)W)ik)

)
−

s∑
i=1

K∑
k=1

1yi=k(Φ(X)W)ik〉

in matrix form. The key question that remains for both the binary and the multinomial logistic
regression problem is: how do we solve these minimisation problems computationally?

We will focus on the binary logistic regression case with polynomial data model f(x,w) =
〈φ(x), w〉; the multinomial logistic regression case can be covered in almost identical fashion, just
with different computations. The first thing that we observe is that the objective- (or cost-)function

L(w) :=
s∑
i=1

[log (1 + exp (〈φ(xi), w〉))− yi〈φ(xi), w〉] (2.39)

is differentiable. So can we maybe compute the gradient, set the gradient to zero and solve for the
weights w as we did for the mean-squared error regression? Computing the partial derivative of L
with respect to wl, for l ∈ {0, . . . , d}, yields

∂L

∂wl
=

s∑
i=1

φ(xi)l (σ (〈φ(xi), w〉)− yi) ,

=
s∑
i=1

Φ(X)il (σ ((Φ(X)w)i)− yi) .

Here σ denotes the logistic function as defined in (2.36). Hence, the entire gradient of L reads

∇L(w) = Φ(X)> (σ(Φ(X)w)− y)

in column-vector form. Here, σ(Φ(X)w) is short-hand notation for applying the logistic function
point-wise to every component of the vector Φ(X)w. Setting the gradient to zero and solving it
for the corresponding argument ŵ would therefore require the solution of the equation

0 = Φ(X)> (σ(Φ(X)ŵ)− y) . (2.40)

Because of the non-linearity of σ, we cannot simply solve (2.40) for ŵ and a fixed but arbitrary
matrix Φ(X). Having computed the gradient, we can, however, try to approximate a solution of

ŵ = arg min
w∈R1+d

{L(w)} (2.41)

via gradient descent, as defined in Algorithm 1. For this particular choice of cost function L, the
gradient descent iterate becomes

wk+1 = wk − τ Φ(X)>
(
σ(Φ(X)wk)− y

)
.

The question that we need to address is whether gradient descent will convergence to a solution
of (2.41). Note that in order to apply Theorem 2.3, we only need to verify convexity of L and
1/τ -smoothness.

https://en.wikipedia.org/wiki/Multinomial_logistic_regression

42 2.9. CLASSIFICATION

Corollary 2.2 (Second order convexity). A twice differentiable one-dimensional function f : C →
R over a convex set C ⊂ R is convex if and only if f ′′(x) ≥ 0 for all x ∈ C.

With the previous corollary we can verify that the logistic regression function is convex.

Lemma 2.6 (Convexity of the binary logistic regression problem). The function L : R1+d → R
as defined in Equation (2.39) is convex.

Proof. We basically only need to show that the function f(z) := log(1 + exp(z)) is convex; then
we could conclude that L is a sum of convex functions (and therefore convex itself), as linear
functions are convex and since compositions of convex functions and linear functions are convex.
We verify that f is convex by showing that f ′′(z) ≥ 0 for all z ∈ R. We had already computed
the first derivative that reads

f ′(z) =
1

1 + exp(−z)
= σ(z) ;

It can be easily verified that the second derivative reads

f ′′(z) = σ(z) (1− σ(z)) .

Since σ(z) ∈ [0, 1] for all z ∈ R, we immediately see that f ′′(z) ≥ 0 for all z. Hence, f is convex
and as a consequence, L is convex.

In order to converge successfully to a minimiser of the logistic regression problem with gradient
descent, we only need to specify a step-size τ > 0 that is sufficiently small so that the objective
values decrease monotonically (if such a step-size exists). Without proof, we use that the logistic
function σ is a 1

4 -Lipschitz continuous function, i.e.

|σ(x)− σ(y)| ≤ 1

4
|x− y| ,

for all x, y ∈ R. Then we can conclude that the gradient ∇L(w) is 1/τ -Lipschitz continuous, i.e.

‖X> (σ(Xw)− y)−X> (σ(Xv)− y) ‖ = ‖X> (σ(Xw)− σ(Xv)) ‖ ,
≤ ‖X‖‖σ(Xw)− σ(Xv)‖ ,

≤ ‖X‖
4
‖Xw −Xv‖ ,

≤ ‖X‖
2

4
‖w − y‖ ,

for τ = 4/‖X‖2 and all w, v ∈ R1+d. Hence, gradient descent is guaranteed to converge to a global
minimum of L for τ < 4/‖X‖2 as a consequence of Lemma 2.3 and Theorem 2.3.

2.9.3 Support-vector machines (SVMs)

One limitation of logistic regression is that the hyperplane that spans the decision boundary is
not necessarily optimal in the sense that it maximises the distance between the closest data points
on each side of the decision boundary. This feature can, however, be achieved in the context of
binary classification with Support Vector Machines (SVMs) that utilise a different data model.
For a more detailed motivation we refer to the lecture videos & slides. For a set of data points
{(xi, yi)}si=1, with yi ∈ {−1, 1} for all i ∈ {1, . . . , s}, and a linear model function f(x,w) with

CHAPTER 2. SUPERVISED LEARNING 43

parameters w ∈ R1+d, the key idea is to maximise the distance r of the closest data points to the
hyper-plane, but to ensure that the each data point ends up on the correct side of the decision
boundary at the same time. Mathematically, for a linear model f(x,w) = 〈φ(x), w〉 this distance
r can be characterised via

r =
f(x,w)

‖w‖
,

while ensuring that each data point is on the correct side of the decision boundary can mathemat-
ically be described as the constraint

yi f(xi, w)− 1 ≥ 0 ,

for all i ∈ {1, . . . , s}. In order to maximise r, we can minimise ‖w‖ (or ‖w‖2) subject to the
previous constraint, i.e.

min
w0,w2,...,wd

‖w‖2 subject to yi f(xi, w)− 1 ≥ 0 , ∀i ∈ {1, . . . , s} . (2.42)

If the data points cannot be separated linearly, Problem (2.42) doesn’t have a solution. To over-
come this limitation, we can relax Problem (2.42) to

min
w∈R1+d

s∑
i=1

max (0, 1− yi 〈xi, w〉) +
α

2
‖w‖2 , (2.43)

for w =
(
w0 w2 . . . wd

)> and a balancing (or regularisation) parameter α > 0. The solution to
Problem (2.43) is known as the soft-margin SVM ; the solution to Problem (2.42) as hard-margin
SVM. In the following we want to discuss how to simplify (2.43) to make it computationally more
tractable.

We follow a similar trick as in Section 2.7.2 where we have reformulated the absolute value
function in terms of a dual variable. We can do the same trick for the ramp function max(0, z),
i.e. we can write max(0, z) as

max(0, z) = max
λ∈[0,1]

λz .

Replacing the ramp function in (2.43) with this dual characterisation yields the min-max problem

min
w∈R1+d

{
max
λ∈[0,1]s

s∑
i=1

λi (1− yi〈xi, w〉) +
α

2
‖w‖2

}
. (2.44)

Note that the underlying function L(w, λ) defined as

L(w, λ) :=

s∑
i=1

λi (1− yi〈xi, w〉) +
α

2
‖w‖2 − χ[0,1]s(λ)

with

χ[0,1]s(λ) =

{
0 ∀i ∈ {1, . . . , s} : λi ∈ [0, 1]

∞ ∃i ∈ {1, . . . , s} : λi 6∈ [0, 1]
,

is convex in the first argument (for fixed second argument) and concave in the second argument (for
fixed first argument), where convexity and concavety are defined as in Definition 2.2, respectively
Definition 2.3. This statement is left as an exercise to the curious reader. The following theorem
states that it makes no difference for such functions whether one first maximises and then minimises
the function, or if one first minimises and then maximises the function.

44 2.9. CLASSIFICATION

Theorem 2.5 (Minimax Theorem, von Neumann 1928). Let X ⊂ Rm and Y ⊂ Rn be compact,
convex sets. If f : X × Y → R is a continuous function that is convex-concave, i.e.

f(·, y) : X → R is convex for fixed y ,
f(x, ·) : Y → R is concave for fixed x .

Then the max-min inequality is an equality, i.e.

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) .

Thanks to Theorem 2.5, we can replace (2.44) with the equivalent problem

max
λ∈[0,1]s

{
min

w∈R1+d

s∑
i=1

λi (1− yi〈xi, w〉) +
α

2
‖w‖2

}
. (2.45)

What is the advantage of (2.45) over (2.44), you may ask? The advantage is that (2.44) can be
solved more easily, as the inner problem becomes differentiable. The gradient of L with respect to
w reads

∇wL(w, λ) = −
s∑
i=1

λiyixi + αw .

Computing ŵ with ∇wL(ŵ, λ) = 0 yields

ŵ =
1

α

s∑
i=1

λiyixi . (2.46)

Inserting ŵ into L(w, λ) then turns (2.45) into

max
λ∈[0,1]s

{
〈λ,1〉 − 1

2α
‖X>Y λ‖2

}
. (2.47)

Here Y is short-hand notation for the s × s diagonal matrix that contains the elements of the
vector y on its diagonal, i.e.

Y = diag(y) :=

y1 0 0 · · · 0
0 y2 0 · · · 0
...

. . .
...

0 · · · 0 · · · ys

 ,

and 1 is short-hand-notation for the s-dimensional vector of ones, i.e. 1 =
(
1 1 1 . . . 1

)> ∈
Rs. We can reformulate (2.47) equivalently as minimisation problem; hence, computing the argu-
ment λ̂ that minimises this expression is

λ̂ = arg min
λ∈[0,1]

{
1

2α
‖X>Y λ‖2 − 〈λ,1〉

}
. (2.48)

This convex problem can be solved computationally with various algorithms; examples include
the proximal gradient method as described in Algorithm 2 and coordinate descent. Both methods
utilise proximal maps, which in this case reduce to the orthogonal projection onto the convex set
[0, 1], i.e. (

(I + ∂χ[0,1]s)
−1(z)

)
i

= min(1,max(0, zi)) ,

for all i ∈ {1, . . . , s}. Note that by solving (2.48) we automatically find the argument that
minimises the original soft-margin SVM problem (2.43) via (2.46).

https://en.wikipedia.org/wiki/Coordinate_descent

CHAPTER 2. SUPERVISED LEARNING 45

2.9.4 Semi-supervised binary classification with graphs

In this section we discuss how to model semi-supervised classification problems with the help of
undirected, weighted graphs. An undirected, weighted graph is defined as follows.

Definition 2.8. An undirected graph G is a pair G = (V,E), where V is a set of elements called
vertices, and E =

{
x, y | (x, y) ∈ V 2 ∧ x 6= y

}
is a set of edges. A weighted graph (or network)

is a graph in which a number, known as weight, is assigned to each edge.

An example of an undirected, weighted graph can be seen in Figure 2.2.

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

Dunwich

46

3

15

40

17

40

29

811

31

53

Figure 2.2: An example of a weighted graph of several connected towns in the south east of England.
This graph has seven vertices (or nodes), representing different towns, connected by eleven edges. The
weights represent the distances between the connected towns. c©Wikimedia commons.

For a (weighted) graph (with weights w) we define a so-called incidence matrix Mw ∈ R|E|×|V |,
where |E| denotes the number of edges and |V | the number of vertices, as

(Mw)ev :=

−√wev if v = i
√
wev if v = j

0 otherwise
,

where every edge e = (i, j) connects vertices i and j, with i < j. The corresponding graph-

https://upload.wikimedia.org/wikipedia/commons/5/5f/CPT-Graphs-undirected-weighted.svg

46 2.9. CLASSIFICATION

Laplacian Lw ∈ R|V |×|V | is then defined as

Lw := M>wMw .

It is always best to give a concrete example for such an incidence matrix as well as the graph-
Laplacian.

Example 2.5. The incidence matrix for the graph in Figure 2.2 reads

Mw =

−
√

15
√

15 0 0 0 0 0

−
√

53 0
√

53 0 0 0 0

0 −
√

40
√

40 0 0 0 0

0 −
√

46 0 0
√

46 0 0

0 0 0 −
√

3
√

3 0 0

0 0 −
√

31
√

31 0 0 0

0 0 0 −
√

29 0
√

29 0

0 0 −
√

17 0 0
√

17 0

0 0 0 0 −
√

11 0
√

11

0 0 0 −
√

8 0 0
√

8

0 0 0 0 0 −
√

40
√

40

,

while the corresponding graph Laplacian is then given as

Lw = M>wMw =

68 −15 −53 0 0 0 0
−15 101 −40 0 −46 0 0
−53 −40 141 −31 0 −17 0

0 0 −31 71 −3 −29 −8
0 −46 0 −3 60 0 −11
0 0 −17 −29 0 86 −40
0 0 0 −8 −11 −40 59

.

The graph Laplacian can also be decomposed into a so-called degree matrix Dw and an adjacency
matrix Aw via Lw = Mw − Aw, which we in the interest of time will not explore any further
throughout this lecture.

We can use weighted graphs to model and exploit similarities in datasets. Suppose we are
given a set S := {xi}si=1 of s samples, for which only r � s samples in the set R := {xi(j)}rj=1 have
corresponding (binary) output labels {yj}rj=1 with values in {0, 1}. Here i : {1, . . . , r} → {1, . . . , s}
denotes an index function that picks the indices for which labels are known. If r is very small,
supervised learning on just r samples may not lead to mappings that have satisfactory predictive
powers when applied to the classification of new samples x. However, we can assume that all data
points {xi}si=1 are nodes in a connected graph. The weights between each nodes are determined
by a similarity measure, for example of the form

wij =

{
exp

(
−γ‖xi − xj‖2

)
‖xi − xj‖ ≤ threshold

0 ‖xi − xj‖ > threshold
,

for a constant γ > 0 and a threshold value that guarantees that not all weights are non-zero.
This way we create an undirected weighted graph with connections between nodes where there is
similarity in terms of the Euclidean norm. Based on this graph with weights w, we can construct a

Omer Bobrowski

CHAPTER 2. SUPERVISED LEARNING 47

corresponding incidence matrix Mw. This type of supervised machine learning is usually referred
to as semi-supervised, as we only require a smaller subset R of a set of (training) samples S instead
of the entire set of training samples in order to perform the binary classification task.

One could now try to pursue a supervised classification task by solving the following optimi-
sation problem:

v̂ = arg min
v∈[0,1]s

{
‖Mwv‖2 subject to (PRv)j = yj , for all j ∈ {1, . . . , r}

}
. (2.49)

Here PR : Rs → Rr denotes the projection of a vector on the indices specified by the index function
i, i.e.

(PRv)j = vi(j) , ∀j ∈ {1, . . . , r} .

The label vector v̂ is constrained to have values in [0, 1]s and to take on the correct values for
the indices with corresponding output labels. The remaining values are determined by ensuring
minimal ‖Mwv̂‖2 for v̂ amongst all possible label vectors v ∈ Rs.

Note that given the sets S and R, we can easily define the complement R⊥ := S \ R of R. If
we denote the projection onto this set with PR⊥ : Rs → Rs−r, we can rewrite v as

v = P>R⊥PR⊥v + P>R PRv = P>R⊥PR⊥v + P>R y .

Note that we only need to compute PR⊥ v̂ instead of v̂ as PRv̂ = y is already known. As a direct
consequence, we can reformulate (2.49) to

PR⊥ v̂ = arg min
ṽ∈[0,1]s−r

{∥∥∥Mw

(
P>R⊥ ṽ + P>R y

)∥∥∥2
}

= arg min
ṽ∈Rs−r

{∥∥∥Mw

(
P>R⊥ ṽ + P>R y

)∥∥∥2
}
, (2.50)

where the last equality holds when y ∈ [0, 1]r. In the following, we want to give a small example
to illustrate this approach of binary classification.

Example 2.6. We consider the following graph where its weights mimic a similarity measure
between the individuals in the nodes:

48 2.9. CLASSIFICATION

Jessica Chastain

Will Ferrell

Bryce D. Howard

Tilda Swinton

Conan O’Brian

Chad Smith

E4: 64E2: 25
E3: 81

E5: 36

E1: 25

E7: 49

E6: 36

Wherever there is no edge between two nodes, the corresponding weight, respectively the similarity
measure, is zero. Computing the incidence matrix Mw of this weighted graph yields

E1 −5 0 0 0 5 0
E2 0 0 0 −5 5 0
E3 0 −9 0 0 0 9
E4 −8 0 0 8 0 0
E5 0 0 −6 0 0 6
E6 0 −6 6 0 0 0
E7 0 0 −7 0 7 0

B. D. Howard C. Smith C. O’ Brian J. Chastain T. Swinton W. Ferrell

.

The corresponding graph Laplacian reads

Lw = M>wMw =

89 0 0 −64 −25 0
0 117 −36 0 0 −81
0 −36 121 0 −49 −36
−64 0 0 89 −25 0
−25 0 −49 −25 99 0

0 −81 −36 0 0 117

 .

CHAPTER 2. SUPERVISED LEARNING 49

Suppose we want to classify each node according to biological sex, and already know that Jessica
Chastain is female (class label v̂4 = 1) and Will Ferrell is male (class label v̂6 = 0). We can
therefore formulate (2.50) with the projections

PR⊥ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 and PR =

(
0 0 0 1 0 0
0 0 0 0 0 1

)
,

and the data y =
(
1 0

)>. This leaves us with the solution of the linear system

PR⊥LwP
>
R⊥ ṽ︸︷︷︸

=P
R⊥ v̂

= −PR⊥LwP>R y ,

which for this example reads
89 0 0 −25
0 117 −36 0
0 −36 121 −49
−25 0 −49 99

 ṽ =

64
0
0
25

 .

The solution to this linear system is (approximately) ṽ ≈
(
0.8912 0.0840 0.2732 0.6128

)>,
respectively

v̂ =
(
0.8912 0.0840 0.2732 1 0.6128 0

)>
.

We can use this result to classify the remaining nodes by setting all values below 1/2 to zero
and above 1/2 to one. In this example, we would (correctly) determine the biological sex of Bryce
Dallas Howard as female, of Chad Smith as male, of Conan O’ Brian as male, and of Tilda Swinton
as female.

2.9.5 From semi-supervised to unsupervised classification

To fully transition from (semi-)supervised to unsupervised machine learning, we want to address
the case when r is chosen to be zero. In this case we have just a lot of samples {xi}si=1 and no
labels. Solving (2.50) for r = 0, i.e.

v̂ = arg min
v∈[0,1]s

{
‖Mwv‖2

}
,

is pointless, as it is easy to see that the solution to this problem is simply v̂ = 0, or any vector v̂
with Mwv̂ = 0 and v̂ ∈ [0, 1]s, and therefore not particularly interesting. Things change, however,
if we at the same time ensure that the norm of v̂ is reasonably large. We can achieve this by
solving the optimisation problem

v̂ = arg min
v∈[0,1]s

‖Mwv‖
‖v‖p

, (2.51)

where ‖ · ‖p denotes the p-norm. This problem is a generalised eigenproblem, i.e. we compute
the smallest eigenvector of the graph-Laplacian Lw = M>wMw subject to the constraint that the
eigenvector has to lie in [0, 1]s. If Mw has a non-trivial null space, i.e. there exist v ∈ Rs \ {0}

50 2.9. CLASSIFICATION

withMwv = 0, the smallest eigenvector is simply an element in the null space ofMw with minimal
p-norm, which often is not particularly interesting for unsupervised classification either. If we
denote such a ground state with v0, we can formulate the modified eigenproblem

vλ = arg min
v∈[0,1]s

‖Mw(v − v0)‖
‖v − v0‖p

= arg min
v∈[0,1]s

‖Mwv‖
‖v − v0‖p

,

where v0 is a solution of (2.51). This way we can obtain a non-trivial generalised eigenvector (with
eigenvalue λ = ‖Mwvλ‖/‖vλ − v0‖p) of the graph-Laplacian Lw. In the following chapter we are
going to explore unsupervised machine learning problems more generally.

Example 2.7. If we consider the Euclidean norm (p = 2) in (2.51) and forget about the [0, 1]s

constraint for a moment, we easily compute

Lwv̂ =
‖Mwv̂‖2

‖v̂‖2
v̂

= λv̂ ,

for λ := ‖Mwv̂‖2/‖v̂‖2. Hence, we deal with a conventional eigenproblem of the graph-Laplacian
Lw. If we take the graph Laplacian from Example 2.6, we compute the following (orthonormal)
eigenvectors and corresponding eigenvalues:

V ≈

0.4082 −0.4986 −0.2759 0.7071 0.0928 0
0.4082 0.4577 −0.2901 0 −0.1993 −0.7071
0.4082 0.2416 0.4265 0 0.7701 0
0.4082 −0.4986 −0.2759 −0.7071 0.0928 0
0.4082 −0.1597 0.7054 0 −0.557 0
0.4082 0.4577 −0.2901 0 −0.1993 0.7071

 and λ ≈

0
17

88.93
153

175.08
198

 .

The first eigenvector, as predicted, is simply a constant vector with eigenvalue zero and not
particularly interesting. The second eigenvector, however, is extremely interesting. Let us multiply
the vector with −1 and subtract the smallest value (≈ −0.4577) from this product, so that we
obtain a vector in [0, 1]s for s = 6, namely

v ≈

0.9563
0

0.2161
0.9563
0.6173

0

 .

If we set all values larger than 1/2 to one and all values smaller than 1/2 to zero, we obtain
v =

(
1 0 0 1 1 0

)>, which matches the binary classification result from Example 2.6, but
in contrast to Example 2.6 has been obtained in completely unsupervised fashion.

Chapter 3

Unsupervised learning

The last section saw a transitioning from using pairs of input/output samples {(xi, yi)}si=1 to
having samples of input data {xi}si=1 only. Learning only from input samples, or training a model
based on input samples only, is known as unsupervised learning. Unsupervised learning naturally
appears in a variety of applications, like clustering of data points or making recommendations
to users or customers, where reliable output data is unavailable. In the following, we want to
describe several unsupervised learning tasks in greater detail and discuss how to approach these
tasks mathematically and computationally.

3.1 Clustering

The term clustering describes the process of partitioning a dataset into several subsets, also known
as clusters. A typical application can be the clustering of academic papers into clusters that
represent different research areas or different fields within a research area.

A key challenge in clustering is to infer the correct clusters from the given data, without any
additional information in form of labels. In the next section, we want to start with a very basic
but hugely popular model that can take care of such a challenge, assuming that we know how
many clusters we are looking for.

3.1.1 k-means clustering

The arguably most popular and simple clustering model is k-means clustering. Its idea is incredibly
simple and yet powerful: we assume that the input data can be partitioned into k clusters, such
that every data point only belongs to exactly one cluster. To be more precise, every data point
belongs to the particular cluster for which the Euclidean distance of that point to the cluster
centre is smaller compared to all other clusters. Mathematically, we can formulate the following
optimisation problem that can help to achieve this goal. Suppose we have s data points {xi}si=1,
where every xi ∈ Rn is n-dimensional, and we aim to identify two matrices z ∈ Rs×k and µ ∈ Rn×k
that minimise the function

L(z, µ) =
s∑
i=1

k∑
j=1

zij‖xi − µj‖2 . (3.1)

Here µj ∈ Rn denotes the j-th column of µ, which is the matrix of prototype vectors or centres or
centroids of the cluster. The matrix z contains the cluster assignments, i.e. the information which

51

52 3.1. CLUSTERING

Algorithm 4 k-means clustering.
Specify: the number of clusters k.
Initialise: µ0 ∈ Rn×k
Iterate:
1: for l = 0, . . . , N − 1 do

2: zl+1
ij =

{
1 j = arg minr∈{1,...,k} ‖xi − µlr‖2

0 otherwise
, for all i ∈ {1, . . . , s}

3: µl+1
j =

∑s
i=1 z

l+1
ij xi∑s

i=1 zij
, for all j ∈ {1, . . . , k}

4: end for
return zN , µN .

data point belongs to which cluster. Note that without any additional constraints, the function L
in (3.1) is not bounded from below, and attempting to minimise it will result in parameters that
send the function value to −∞. Since the squared Euclidean norm is always bounded from below
by zero, we have to impose additional constraints on z in order to ensure boundedness from below
of L. Ensuring zij ∈ {0, 1} for all i ∈ {1, . . . , s} and j ∈ {1, . . . , k} for example guarantees that L
is bounded from below by zero. However, we also want to ensure that every data point is assigned
to exactly one class, which is why we also have to enforce

∑k
j=1 zij = 1 for all i ∈ {1, . . . , s}.

Together with the constraint we obtain the following minimisation problem: find assignments ẑ
and centroids µ̂ that satisfy

(ẑ, µ̂) = arg min
z∈Rs×k, µ∈Rn×k

s∑
i=1

k∑
j=1

zij‖xi − µj‖2 subject to zij ∈ {0, 1} ,
k∑
j=1

vij = 1, ∀i, j

 . (3.2)

Solving (3.2) is not trivial, as the problem is not convex and there exists no closed-form solution
for it. We therefore attempt to solve (3.2) iteratively in an alternating fashion also known as
coordinate descent, i.e. via

zl+1 = arg min
z∈Rs×k

s∑
i=1

k∑
j=1

zij‖xi − µlj‖2 subject to zij ∈ {0, 1} ,
k∑
j=1

zij = 1, ∀i, j

 , (3.3a)

µl+1 = arg min
µ∈Rn×k

s∑
i=1

k∑
j=1

zl+1
ij ‖xi − µj‖

2

 , (3.3b)

where l ∈ N denotes the iteration index and where µ0 is some suitable initialisation. The nice
thing about updating the variables in an alternating fashion is that the individual updates of (3.3)
now have closed-form solutions, which read

zl+1
ij =

{
1 j = arg minr∈{1,...,k} ‖xi − µlr‖2

0 otherwise
, for all i ∈ {1, . . . , s} , (3.4a)

µl+1
j =

∑s
i=1 z

l+1
ij xi∑s

i=1 zij
, for all j ∈ {1, . . . , k} . (3.4b)

The k-means clustering algorithm is summarised in Algorithm 4. A detailed convergence proof is
beyond the scope of this lecture, but we can easily establish a decrease of the objective function
with the following lemma.

CHAPTER 3. UNSUPERVISED LEARNING 53

Lemma 3.1. Suppose we are given a function F : Rm × Rn → R ∪ {∞} in two variables, two
arguments x∗, y∗ in the domain of F , and we compute

x̂ = arg min
x∈Rm

F (x, y∗) ,

ŷ = arg min
y∈Rn

F (x̂, y) .

Then we already know

F (x̂, ŷ) ≤ F (x∗, y∗) .

Proof. The proof is trivial, since by definition of x̂ and ŷ we have F (x̂, y∗) ≤ F (x∗, y∗) and
F (x̂, ŷ) ≤ F (x̂, y∗) ≤ F (x∗, y∗).

As a consequence of Lemma 3.1, the inequality

L(zl+1, µl+1) ≤ L(zl, µl)

is guaranteed for all iterates (3.4), L as defined in (3.1) and all l ∈ N.
Despite its simplicity and considerable success (which you will explore in form of coursework),

k-means clustering also has some downsides. First of all, in order to use k-means clustering, we
have to know the number of clusters k in advance. Secondly, every data sample can only be
associated to one cluster, which is not necessarily suitable for some types of application. Thirdly,
the clusters are sphere-shaped as a consequence of the Euclidean distance between data points
and the cluster centroids, with equal radii for each cluster. For some of these drawbacks there
are obvious remedies. Some of them we will discuss in the upcoming section on clustering with
Gaußian mixture models.

3.1.2 Gaußian mixture models

A popular alternative to k-means clustering is clustering with Gaußian mixture models. Usually
spelled Gaussian mixture models in English literature, I take the liberty to use the original German
spelling Gauß with the letter ß, the so-called sharp s.

In Gaußian mixture models, the idea for each data sample xi is to maximise the likelihood of
a probability density function that is the some of Gaußians, i.e.

p(xi|µ1, . . . , µk,Σ1, . . . ,Σk, ρ1, . . . , ρk) =

k∑
j=1

ρj N (xi|µj ,Σj) ,

where N (xi|µj ,Σj) denotes the multivariate normal distribution density function, i.e.

N (xi|µj ,Σj) :=
1√

(2π)n det(Σj)
exp

(
−1

2
〈Σ−1

j (xi − µj), xi − µj〉
)
.

Assuming that all samples are independent and identically distributed (iid), and using the short-
hand notations

X :=

x1 x2 . . . xs

 , M :=

µ1 µ2 . . . µk

 , Σ :=
(
Σ1 Σ2 . . . Σk

)
,

54 3.1. CLUSTERING

and ρ :=
(
ρ1, . . . , ρk

)>, we can write the density function for all samples as

p(X|M,Σ, ρ) =

s∏
i=1

k∑
j=1

ρjN (xi|µj ,Σj) . (3.5)

The vector ρ is considered to be a discrete probability mass vector, i.e. it satisfies ρj ≥ 0 and∑k
j=1 ρj = 1. Given (3.5), the goal is to find parameters M , Σ and ρ that maximise (3.5). As we

know from earlier sections as well as the previous semester, instead of maximising (3.5) we can
also minimise the negative log-likelihood, i.e.

NNL(M,Σ, ρ) := − log

 s∏
i=1

k∑
j=1

ρjN (xi|µj ,Σj)

= −

s∑
i=1

log

 k∑
j=1

ρjN (xi|µj ,Σj)

 .

We now pursue the same strategy that we always pursue when it comes to minimising a negative
log-likelihood: we compute the derivatives of NNL with respect to the individual parameters and
set them to zero. Starting with the prototype vectors µl, we observe

∂NNL
∂µl

=
s∑
i=1

ρj N (xi|µl,Σl)∑k
j=1 ρj N (xi|µj ,Σj)

Σ−1
l (xi − µl) = 0 ,

which can be concluded with the identity ∂
∂xi

log (f(x1, . . . , xn)) =
(

∂
∂xi
f(x1, . . . , xn)

)
/f(x1, . . . , xn).

Hence, we can re-write ∂NNL/∂µl = 0 to

µl =
1

sl

s∑
i=1

γ(xi,M,Σ)l xi , (3.6)

where we have defined

γ(xi,M,Σ)l :=
ρj N (xi|µl,Σl)∑k
j=1 ρj N (xi|µj ,Σj)

,

and

sl :=

s∑
i=1

γ(xi,M,Σ)l ,

and made the assumption that Σl is invertible. Setting the partial derivative with respect to a
covariance matrix Σl to zero and bringing Σl onto one side of the equation then yields

Σl =
1

sl

s∑
i=1

γ(xi,M,Σ)l (xi − µl)(xi − µl)> . (3.7)

Note that we require the identity ∂
∂Σj

det(Σj)
− 1

2 = −1
2 det(Σj)

− 1
2 Σ−1

j to derive (3.7). The op-
timality condition for the variable ρ is a bit trickier, as we have to also ensure the constraints

CHAPTER 3. UNSUPERVISED LEARNING 55

Algorithm 5 Gaußian-mixture model clustering.
Specify: the number of clusters k.
Initialise: M0 ∈ Rn×k,Σ0 ∈ Rn×kn, ρ0 ∈ Rk
Iterate:
1: for p = 0, . . . , N − 1 do
2: for l = 1, . . . , k do
3: sp+1

l =
∑s

i=1 γ(xi,M
p,Σp)l ,

4: µp+1
l = 1

sp+1
l

∑s
i=1 γ(xi,M

p,Σp)l xi ,

5: Σp+1
l = 1

sp+1
l

∑s
i=1 γ(xi,M

p,Σp)l

(
xi − µp+1

l

)(
xi − µp+1

l

)>
,

6: ρp+1
l =

sp+1
l
s

7: end for
8: end for
return MN , ΣN , ρN .

ρl ≥ 0 and
∑k

j=1 ρk = 1. One way to do so is by introducing a so-called Lagrange multiplier λ,
and formulate the Lagrange function

− log(p(X|M,Σ, ρ)) + λ

1−
k∑
j=1

ρj

 .

Computing the partial derivative of this function with respect to ρl and setting it to zero then
yields

0 =
s∑
i=1

γ(xi,M,Σ)l + λ .

Multiplying both sides by ρ and summing from one to k then leads to the relation λ = −s, so that
we compute

ρl =
sl
s
. (3.8)

Equations (3.6) to (3.8) from an optimality system that characterises the first-order optimality
condition of minimising NLL with respect to M , Σ and ρ. The question that remains is: how
do we utilise this optimality system in order to obtain an algorithm to compute the parameters
numerically? Many options are available, but the most common one in the literature is the
Expectation Maximisation (EM) algorithm. The idea is to solve the optimality system (3.6) to
(3.8) via the fixed-point iteration in Algorithm 5.

3.1.3 Spectral clustering

When we transitioned from semi-supervised to unsupervised learning, we have discovered a first
example of spectral clustering in form of Problem (2.51). The eigenvalues of a matrix are often
referred to as spectrum, hence the name spectral clustering. In this section we want to focus on
more generic eigenvalue problems of the form

min
S(u)=0

F (u)

G(u)
. (3.9)

https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Expectation\T1\textendash maximization_algorithm

56 3.1. CLUSTERING

Algorithm 6 Nonlinear inverse power iteration.
Specify: parameter τ > 0, index K
Initialise: u0

Iterate:
1: for k = 0, . . . ,K − 1 do
2: λk = F (uk)/G(uk)
3: uk+1 = (I + τ ∂F)−1(uk + τλk∇G(uk))
4: end for
return uK , λk.

Note that (2.51) is a special case of (3.9) for the choices F (u) = ‖Mwu‖, G(u) = ‖u‖p and
S(u) = χ[0,1]s(u). But other, more interesting eigenvalue problems can be formulated as well; the
following problem is particularly interesting for graph-based spectral clustering:

min
median(u)=0

‖Mwu‖1
‖u‖1

= min
u

‖Mwu‖1
‖u−median(u)‖1

= min
u

∑# edges
i=1

∣∣∣∑# vertices
j=1 wijuj

∣∣∣
‖u−median(u)‖1

; (3.10)

Here, median refers to the median of a vector, which is defined as

median(u) := arg min
s∈R

#vertices∑
j=1

|s− uj | .

Problem (3.10) is also known as the ratio cut problem, which is equivalent to the Cheeger cut
problem. The motivation behind (3.10) is to create labels u that are piecewise constant. We will
discover in the computational coursework that this leads to superior classification results compared
to model (2.51). A key question that remains is the following: how do we computationally solve
(3.10), or more generally (3.9)? We start with Problem (3.9) and the assumption that both F and
G are continuously differentiable. We can then compute the gradient of F (u)/G(u) and set it to
zero, which reads

0 = ∇F (û)− F (û)

G(û)
∇G(û) . (3.11)

We aim to approximate a solution of (3.11) via a generalised inverse power iteration of the form

uk+1 = arg min
u

{
F (u)− λk〈∇G(uk), u− uk〉+

1

2τ
‖u− uk‖2

}
,

= arg min
u

{
1

2

∥∥∥u− (uk + τλk∇G(uk)
)∥∥∥2

+ τF (u)

}
,

= (I + τ∂F)−1
(
uk + τλk∇G(uk)

)
,

for λk := F (uk)/G(uk) and a positive step-size parameter τ . What is nice about this generalised
inverse power iteration is that it is simple (assuming that computing the proximal map is simple)
and that we easily observe a decrease of the objective F (u)/G(u).

Lemma 3.2. Suppose the functions F and G are continuous and convex, and G is also differen-
tiable. Then the iterates of Algorithm satisfy

λk+1 ≤ λk .

Here, λk = F (uk)/G(uk) denotes the Rayleigh quotient of the current iterate, for all k ∈ N.

https://en.wikipedia.org/wiki/Median
https://icml.cc/Conferences/2010/papers/233.pdf
https://icml.cc/Conferences/2010/papers/233.pdf

CHAPTER 3. UNSUPERVISED LEARNING 57

Proof. We observe

F (uk+1)− λkG(uk+1)

≤ F (uk+1)− λkG(uk+1) +
1

2τ
‖uk+1 − uk‖2

≤ F (uk+1)− λk
(
G(uk+1)−DG(uk+1, uk)

)
+

1

2τ
‖uk+1 − uk‖2

= F (uk+1)− λk
(
G(uk) + 〈∇G(uk), uk+1 − uk〉

)
+

1

2τ
‖uk+1 − uk‖2

≤ F (uk)− λk
(
G(uk) + 〈∇G(uk), uk − uk〉

)
+

1

2τ
‖uk − uk‖2

= F (uk)− λkG(uk) .

Here, the second inequality follows from the non-negativity of the squared Euclidean norm and
the parameter τ . The third inequality follows from the definition of the Bregman distance and
the convexity of G. The last inequality follows from the fact that uk+1 minimises Ek(u) :=
F (u)−λk〈∇G(uk), u−uk〉+ 1

2τ ‖u−u
k‖2, which means that the objective value has to be smaller

for uk+1 than for uk. Based on the assumption that G(uk+1) 66= 0 and the definition of the Rayleigh
quotient λk = F (uk)/G(uk) for all k = 0, 1, . . ., we conclude the proof by verifying

F (uk+1)− λkG(uk+1) ≤ F (uk)− λkG(uk)

= F (uk)− F (uk) = 0

=⇒ F (uk+1)− λkG(uk+1)

G(uk+1)
≤ 0

=⇒ F (uk+1)

G(uk+1)
− λk ≤ 0

=⇒ λk+1 ≤ λk .

The beauty of Lemma 3.2 is that a monotonic decrease of the generalised Rayleigh quotient
F (u)/G(u) over the course of the generalised inverse power iteration is guaranteed. We do, how-
ever, also have enforce normalisation constraints, as the the algorithm could otherwise make uk

smaller and smaller at every iteration. Another more important issue, however, is that in order to
realise Problem (3.10), the assumption that G is differentiable is too restrictive. On top of that,
solving an optimisation problem of the form

uk+1 = arg min
u

{
1

2

∥∥∥u− (uk + τλk∇G(uk)
)∥∥∥2

+ τ‖Mwu‖1
}

has no closed-form solution, which is why we have to approximate this optimisation problem with
another iterative method. We want to address these two issues in the following two sections.

Subdifferential calculus

Note that Corollary 2.1 gives us an alternative characterisation of differentiable, convex functions,
via the inequality

E(u)− E(v)− 〈∇E(v), u− v〉 ≥ 0 ,

58 3.1. CLUSTERING

for all u, v ∈ Rn. We can use this inequality to characterise so-called subgradients for functions
that are convex but not necessarily differentiable.

Definition 3.1 (Subdifferential). Let E : C ⊂ Rn → R be a convex and continuous function. Then
it’s subdifferential ∂E is defined as the set

∂E(v) := {g ∈ Rn |E(w)− E(v) ≥ 〈g, w − v〉 , ∀w ∈ Rn} .

The elements g ∈ ∂E(v) are called subgradients.

Example 3.1 (Subdifferential of absolute value function). Let E : R→ R≥0 be the absolute value
function E(w) := |w|. Then the subdifferential ∂E is

∂E(w) = sign(w) :=

{1} w > 0

[−1, 1] w = 0

{−1} w < 0

.

The mathematical verification of this subdifferential identity is left as an exercise.

Example 3.2 (Subdifferential of the median function). Suppose E is the functionE(s) =
∑#vertices

j=1 |s−
uj |, such that median(u) = arg mins∈RE(s). Since E is convex, an equivalent characterisation is
0 ∈ ∂E(s). The subdifferential ∂E of E can be characterised as

0 ∈
#vertices∑
j=1

sign(ŝ− uj) .

The right-hand-side can only equal zero if the number of positive entries and the number of negative
entries of ŝ− u is identical.

Based on the subdifferential notion we can characterise minimisers of convex functions as
follows.

Lemma 3.3. Suppose E : C → R is a continuous and convex function that is bounded from below.
Then an argument ŵ ∈ C satisfies 0 ∈ ∂E(ŵ) if and only if ŵ is a global minimiser.

Proof. The condition 0 ∈ ∂E(ŵ) is equivalent to

E(w)− E(ŵ) ≥ 〈0, w − ŵ〉 = 0

for all w ∈ C, which is equivalent to ŵ being a global minimiser.

Hence, we have a notion of optimality for convex, subdifferentiable functions. The question
that remains is: how does this help us with applying the inverse power iteration to functions
G that are not differentiable? The simple idea is that we modify the inverse power iteration as
follows:

uk+1 = (I + τ∂F)−1
(
uk + τλkgk

)
, (3.12a)

gk+1 ∈ ∂G(uk+1) , (3.12b)

for k ∈ N. Putting the difficulty of choosing an appropriate subgradient aside for a moment, a
remarkable result is that we can transfer the result of Lemma 3.2 directly to Algorithm (3.12).

CHAPTER 3. UNSUPERVISED LEARNING 59

Lemma 3.4. Suppose the functions F and G are continuous and convex, and G has a non-empty
subdifferential ∂G. Then the iterates of Algorithm (3.12) satisfy

λk+1 ≤ λk .

Here, λk = F (uk)/G(uk) denotes the Rayleigh quotient of the current iterate uk, for all k ∈ N.

Proof. The proof is identical to the one of Lemma 3.2, since all inequalities still hold if the gradient
of G is replaced with any suitable subgradient of G.

Coming back to Problem (3.10), we can solve this problem via (3.12), which then reads

ũk+1 = arg min
u

{
1

2

∥∥∥u− (vk + τλkgk
)∥∥∥2

+ τ‖Mwu‖1
}
,

uk+1 =
ũk+1

‖ũk+1‖1
,

vk+1 = uk+1 −median(uk+1) ,

gk+1
j =

sign(vk+1
j) vk+1

j 6= 0

− |v
k+1
+ |−|vk+1

− |
|vk+1

0 |
vk+1
j = 0

, ∀j ∈ {1, . . . ,#vertices} ,

λk+1 =
‖Mwu

k+1‖1
‖vk+1‖1

.

Note that we added a normalisation step that doesn’t affect the convergence properties of the
algorithm but that ensures that the generalised eigenvector doesn’t become arbitrarily small. We
further choose each subgradient gk+1 so that they satisfy

∑#vertices
i=1 gk+1

j = 1 for all k, in order to
guarantee λk〈uk, gk〉 = λk〈vk, gk〉 for all k. What remains to be shown is how we can solve the
subproblems

ũk+1 = arg min
u

{
1

2

∥∥∥u− (vk + τλkgk
)∥∥∥2

+ τ‖Mwu‖1
}

(3.13)

computationally.

Solving the inner problem

We conclude by discussing the solution of the subproblems (3.13). In order to do so, we use the
same duality trick that we employed in the support vector machine section. Note that we can
reformulate the underlying minimisation problem of (3.13) as the min-max problem

min
u

max
p

1

2

∥∥∥u− (vk + τλkgk
)∥∥∥2

+ τ〈Mwu, p〉 − χ‖·‖∞≤1(p) .

Since the objective is convex in u and concave in p, we can interchange min and max. Minimising
with respect to u first, i.e.

min
u

1

2

∥∥∥u− (vk + τλkgk
)∥∥∥2

+ τ〈Mwu, p〉 ,

leads to a differentiable problem with solution

u = vk + τλkgk − τM>w p . (3.14)

60 3.2. MATRIX FACTORISATION

Inserting this solution into the original problem leaves us with the dual problem

max
p

τ2

2

∥∥∥M>w p∥∥∥2
+ τ

〈
Mw

(
vk + τλkgk − τM>w p

)
, p
〉
− χ‖·‖∞≤1(p) ,

= max
p
−τ

2

2

∥∥∥M>w p∥∥∥2
+ τ

〈
Mw

(
vk + τλkgk

)
, p
〉
− χ‖·‖∞≤1(p) ,

= min
p

τ2

2

∥∥∥M>w p∥∥∥2
− τ

〈
Mw

(
vk + τλkgk

)
, p
〉

+ χ‖·‖∞≤1(p) ,

= min
‖p‖∞≤1

1

2

∥∥∥τM>w p− (vk + τλkgk
)∥∥∥2

.

This dual problem we can for instance solve via proximal gradient descent as described in Section
2.7.3 or coordinate descent as described in Section 2.9.3. We then recover the solution of the
primal problem via (3.14).

3.2 Matrix factorisation

Unsupervised machine learning strategies often rely on data dimensionality reduction techniques in
order to reveal information hidden in the data. A very basic class of data dimensionality reduction
techniques is known as matrix factorisation. The idea behind matrix factorisation is that data
is given in form of a matrix X, and we assume that the true dimensionality of the matrix (for
example in form of the rank of the matrix) is much lower than the actual dimension of the matrix
X. This assumption can be formulated as

X = WZ> , (3.15)

for matrices X ∈ Rs×n, W ∈ Rs×k and Z ∈ Rn×k. If k is smaller than s and n, the rank of X
is k instead of s or n. In practice, this means that instead of storing sn values of X, we only
need to store k(n+ s) values, which often is much smaller if k is chosen to be small. Imagine for
example that we have a data matrix X ∈ R60000×784, where every row is the vector representation
of one image of the MNIST training dataset, and assume that all images of hand-written digits
can (approximately) be seen as linear combinations of only 100 different images, i.e. k = 100.
Then one could store all images with only 100× (784 + 60000) = 6.078.400 entries, as opposed to
the 47.040.000 entries of the original dataset. These are around 13 % of the original data entries.

Matrix factorisation has uses in many unsupervised machine learning applications, such as data
compression and recommender systems. There are many different ways of factorising matrices and
many different matrix factorisation techniques in order to compute specific factorisations. In the
following section, we want to discuss two extremely popular and widely used approaches known
as singular value decomposition and principal component analysis.

3.2.1 Singular value decomposition (SVD) and principal component analysis
(PCA)

Singular value decomposition, or SVD in short, is a factorisation that generalises the concept of
eigendecompositions of square matrices. It can be shown that every real matrix X ∈ Rs×n can be
factorised into three matrices U ∈ Rs×s, Σ ∈ Rs×n and V ∈ Rn×n via

X = UΣV > . (3.16)

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/Singular_value_decomposition

CHAPTER 3. UNSUPERVISED LEARNING 61

Here both U and V are orthogonal matrices, i.e. U>U = Is×s, UU> = Is×s, V >V = In×n and
V V > = In×n, whose columns are called (left- and right-) singular vectors of X. The matrix Σ is
a diagonal matrix of the form

Σ =

σ1 0 . . . 0
0 σ2 . . . 0

0 0
. . . 0

0 0 . . . σn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

or Σ =

σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0

0 0
. . . 0 0 . . . 0

0 0 . . . σs 0 . . . 0

 ,

depending on whether s > n (first case) or n > s (second case). If n = s, the matrix Σ is the
square diagonal matrix

Σ =

σ1 0 . . . 0
0 σ2 . . . 0

0 0
. . . 0

0 0 . . . σn

 .

The entries {σj}min(s,n)
j=1 are called the singular values of X, and are all non-negative, i.e. σj ≥ 0

for all j ∈ {1, . . . ,min(s, n)}. By convention, the singular values are ordered in descending order,
i.e. σ1 ≥ σ2 ≥ . . . ≥ σmin(s,n) ≥ 0.

It is easy to see that (3.16) is a special case of (3.15), for example via W = UΣ and Z = V .
For now, we either have k = n or k = s, but we will soon address the choice of k < min(s, n).
Note that the SVD of a matrix X allows us to easily compute the Frobenius norm of that matrix
X, as the Frobenius norm is equivalent to the Euclidean norm of the vector of singular values,
which we see from

‖X‖2Fro = 〈X,X〉 = 〈UΣV >, UΣV >〉 = 〈ΣV >, U>U︸ ︷︷ ︸
=Is×s

ΣV >〉 = 〈Σ V >V︸ ︷︷ ︸
=In×n

,Σ〉 = ‖Σ‖2Fro =

min(s,n)∑
j=1

σ2
j .

Here 〈X,Y 〉 =
∑s

i=1

∑n
j=1 xijyij denotes the matrix inner product for two matrices X,Y ∈ Rs×n,

and the Frobenius norm of a matrix is defined as ‖X‖Fro =
√∑s

i=1

∑n
j=1 |xij |2.

Getting back to the idea of lower-dimensional approximations of X, we can easily define such
an approximation with the help of the SVD of X. Suppose we define a new matrix Uk ∈ Rs×k as
the first k columns of U . Then we observe

UkU
>
k X = UkU

>
k UΣV > = Uk

(
Ik×k 0k×(s−k)

)
ΣV > = UΣkV

> ,

where Σk ∈ Rs×n is defined as

Σk =

σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0

0 0
. . . 0

...
. . .

...
0 0 . . . σk 0 . . . 0
0 0 . . . 0 0 . . . 0

0 0 . . . 0
...

. . .
...

0 0 . . . 0 0 . . . 0

,

62 3.2. MATRIX FACTORISATION

0 200 400
k

0

20000

40000

60000

80000

100000

0 200 400
k

102

103

104

105

Figure 3.1: An image of astronaut Eileen Collins from the NASA Great Images database and several
low-rank approximations for k = 3, k = 10, k = 50 and k = 256. In the bottom right corner we also see
two plots of the singular values (one with normal and one withh logarithmic scaling).

https://flic.kr/p/r9qvLn

CHAPTER 3. UNSUPERVISED LEARNING 63

where we have only visualised Σk when Σ is square for the sake of notational simplicity. Conse-
quently, the matrix Xk := UΣkV

> = UkU
>
k X is a rank-k-approximation of X, and a special case

of (3.15) with W = Uk and Z = X>Uk. In fact, it is not only a rank-k-approximation but the
best rank-k-approximation in the sense of the Frobenius norm.

Theorem 3.1 (Best rank-k-approximation / Eckart–Young–Mirsky theorem). For any matrix
X ∈ Rs×n and any matrix X̂ ∈ Rs×n with rank(X̂) = k, we have

‖X − X̂‖2Fro ≥ ‖X −Xk‖2Fro = ‖X − UkU>k X‖2Fro =

min(s,n)∑
j≥k+1

σ2
j .

Hence, Xk is the best rank-k-approximation in the sense of the Frobenius norm.

Proof. For a sketch of a proof you can for example follow the explanations at this link here, or
look at this original publication by Eckart and Young.

Please find a visual SVD example in Figure 3.1. Here we have taken an image of astronaut
Eileen Collins (from the data module of the Python library scikit-image) and converted it into a
matrix X ∈ R512×1536. We have computed several lower rank-approximations of this matrix and
visualised them in Figure 3.1, together with a plot of the singular values.

For the remainder of this section we want to embrace a probabilistic view-point and assume
that we have s samples xj ∈ Rn, j ∈ {1, . . . , s}, that are all drawn i.i.d. from some distribution,
and store them as columns in a matrixX ∈ Rn×s (note that s and n are interchanged in comparison
to our usual convention). We then compute the empirical mean x and the covariance matrix K
for those samples as

x :=
1

s

s∑
j=1

xj and K :=
1

s

s∑
j=1

(xj − x) (xj − x)> ,

Now assume that we have already subtracted the empirical mean from the data, i.e. x =
(0 . . . 0︸ ︷︷ ︸
n entries

)>, and a multiple of s and the covariance matrix K then reads

sK =
s∑
j=1

xjx
>
j = XX> = UΣV >V Σ>U> = UΣ2U> ,

where Σ2 denotes the matrix with squared singular vectors on the diagonal and zeros elsewhere.
If we multiply sK with U> from the left and with U from the right (or replace X in the above
formula with U>X), we obtain

sU>KU = (U>X)(U>X)> = Σ2 ,

which implies that applying the rotation U>X helps to uncorrelate the different components of X.
In addition, the singular vector u1 that corresponds to the largest singular value σ1 is also the vector
amongst all singular vectors that has the largest variance. In this context, the singular vectors
are referred to as principal components, and the decomposition is known as principal component
analysis. Note that the only key difference compared to the SVD is the centering of the data, i.e.
we subtract the mean of the columns of the data matrix.

https://en.wikipedia.org/wiki/Low-rank_approximation#Proof_of_Eckart\T1\textendash Young\T1\textendash Mirsky_theorem_(for_Frobenius_norm)
https://convexoptimization.com/TOOLS/eckart%26young.1936.pdf
https://scikit-image.org/docs/0.14.x/api/skimage.data.html#skimage.data.astronaut
https://en.wikipedia.org/wiki/Covariance_matrix

64 3.2. MATRIX FACTORISATION

3.2.2 Sparse principal component analysis

A potential disadvantage of principal component analysis is that the principal components are usu-
ally linear combinations of all input variables. This might make sense for some applications, but
for some other applications it might make more sense if a principal component is a linear combina-
tion of only a few input variables. Sparse principal component analysis represents an alternative
to classical principal component analysis that allows the recovery of principal components that are
only a combination of few input variables. The classical way of formulating the sparse principal
component problem is the optimisation problem

max
‖u‖p=1

‖u>X‖ subject to ‖u‖0 ≤ k , (3.17)

where ‖u‖0 denotes the number of non-zero entries of the principal component u ∈ Rn, ‖u‖p
denotes the p-vector-norm and k ∈ N is the (maximum) number of non-zero entries. Because of
the cardinality constraint, Problem (3.17) is NP-hard and difficult to solve. A remedy is to replace
the cardinality constrain with a one-norm constraint. There are many ways to formulate such
relaxed formulations, but we opt for a nonlinear eigenvalue formulation of the form

min
‖u‖p=1

α‖u‖1
‖X>u‖

= min
‖u‖p=1

α‖u‖1√
u>Ku

, (3.18)

whereK = XX> denotes the covariance matrix ofX and α is a positive scalar. Similar to the ratio
cut problem in Section 3.1.3, we can iteratively approximate solutions of (3.18) via the following
instance of the nonlinear inverse power iteration:

wk+1 = arg min
w∈Rn

{
α‖w‖1 − λk

〈Kuk, w〉
‖X>wk‖

+
1

2τ
‖w − uk‖2

}
, (3.19a)

uk+1 =
wk+1

‖wk+1‖p
, (3.19b)

λk+1 =
α‖uk+1‖1
‖X>uk+1‖

. (3.19c)

Note that (3.19a) is simply a proximal mapping with respect to the one-norm as defined in Section
2.7.3, i.e.

wk+1 = (I + τα‖ · ‖1)−1

(
uk + τλk

Kuk

‖X>uk‖

)
.

In the next section we explore another alternative to principal component analysis that is robust
towards isolated, sparse outliers in the data.

3.2.3 Robust principal component analysis

Singular value decomposition and principal component analysis are powerful tools for finding
low-rank representations of data matrices. However, many data matrices are only approximately
low-rank, for example as a result of measurement errors, artefacts or other nonlinear influences on
the data acquisition process. In this section we therefore want to discuss a PCA-variant that is
robust towards outliers in the data. Before we introduce the method, we want to reformulate the
problem of finding a low-rank approximation first.

https://en.wikipedia.org/wiki/Sparse_PCA
https://en.wikipedia.org/wiki/NP-hardness

CHAPTER 3. UNSUPERVISED LEARNING 65

The problem of finding a low-rank matrix approximation L̂ ∈ Rn×s to a (centred) matrix
X ∈ Rn×s (of potentially full rank) can be formulated as the optimisation problem

L̂ = arg min
L∈Rn×s

{
1

2
‖L−X‖2Fro + α‖L‖∗

}
. (3.20)

Here, ‖ · ‖∗ denotes the so-called nuclear-norm, which is the one-norm of the vector of singular
values of X, which is simply the sum of the singular values, i.e.

‖L‖∗ =

min(n,s)∑
j=1

σj ,

where {σj}min(n,s)
j=1 denote the singular values of L, and α > 0 is a regularisation parameter. A

tiny exercise for the curious reader: why is the one norm in this case just the sum? What is the
difference of the nuclear norm compared to the Frobenius norm?

Problem (3.20) will find a matrix L̂ close to X, with lower rank, depending on the choice of
α. If X, however, is only low-rank up to some sparsely distributed but significant outliers, model
(3.20) is of no good use for the approximation of this low-rank matrix. We therefore replace the
squared Frobenius-norm in (3.20) with the matrix one-norm, i.e. ‖ · ‖1 :=

∑n
j=1

∑s
i=1 | ·ij |, and

obtain

L̂ = arg min
L∈Rn×s

{‖L−X‖1 + α‖L‖∗} . (3.21)

If we substitute S = X − L in (3.21), we have

(L̂, Ŝ) = arg min
L∈Rn×s,S∈Rn×s

{‖S‖1 + α‖L‖∗ subject to X = L+ S} . (3.22)

Problem (3.22) is known as robust principal component analysis and has first been proposed in
Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. "Robust principal component
analysis?." Journal of the ACM (JACM) 58, no. 3 (2011): 1-37. In the following we want to
address how to solve problem (3.22) computationally (and efficiently).

Before we dive into the derivation of an algorithm for the numerical solution of (3.22), we
want to emphasise that (3.20) is a proximal mapping. In the following we show that this proximal
map has a simple closed form solution. In order to do so, note that for R(L) = ‖L‖∗ we can
guarantee R(Q1 LQ2) = R(L) for two orthogonal matrices Q1 ∈ Rn×n and Q2 ∈ Rs×s, which we
see immediately from the fact that the singular values of Q1 LQ2 is the same as the singular values
of L (exercise). If X = UΣV > denotes the SVD of X, we can substitute L̂ for L̃ = U>L̂V with

L̃ = arg min
L∈Rn×s

{
1

2
‖ULV > − UΣV >‖2Fro + α‖ULV >‖∗

}
,

= arg min
L∈Rn×s

{
1

2
‖L− Σ‖2Fro + α‖L‖∗

}
. (3.23)

(3.24)

Since Σ is a diagonal matrix with non-negative entries, the solution of (3.23) has to be a diagonal

https://dl.acm.org/doi/abs/10.1145/1970392.1970395
https://dl.acm.org/doi/abs/10.1145/1970392.1970395

66 3.2. MATRIX FACTORISATION

matrix with non-negative entries, too. As a consequence, (3.23) simplifies to

l̃ = arg min
l∈Rmin(n,s)
≥0

1

2
‖l − σ‖2 + α

min(n,s)∑
j=1

lj

 ,

= arg min
l∈Rmin(n,s)
≥0

1

2

min(n,s)∑
j=1

(lj − σj)2 + α

min(n,s)∑
j=1

lj

 . (3.25)

where l ∈ Rmin(n,s)
≥0 is the vector of diagonal entries of L̃, i.e. L̃ = diag(l), and also the vector

of singular values of L̃. The vector σ ∈ Rmin(n,s)
≥0 denotes the singular values of Σ, i.e. Σ =

diag(σ). Problem (3.25) has a closed-form solution that we recognise from last semester: the
soft-thresholding of the singular values σ! Hence, we observe

l̃j = max(σj − α, 0) , ∀j ∈ {1, . . . ,min(n, s)} .

We can therefore compute the solution of (3.20) via

L̂ = UL̃V > , for L̃ = diag(l̃) . (3.26)

We will usually write the solution to (3.26) in the proximal map notation as

L̂ = (I + α∂‖ · ‖∗)−1(X) . (3.27)

The practical implications of this proximal map are as follows. Given a matrix X, all singular
values below the threshold α will be set to zero, therefore enforcing a lower rank of L̂ compared
to X if α is larger than at least the smallest singular value of X. All other singular values are
reduced by the factor α.

3.2.4 The linearised Bregman iteration

Based on the previous considerations, we now want to derive an algorithm for the numerical
solution of (3.22). We base our algorithm on the following generalisation of the Bregman proximal
algorithm to non-smooth functions, commonly known as Bregman iteration:

wk+1 = arg min
w∈Rn

{
E(w) +Dpk

J (w,wk)
}
, (3.28a)

pk+1 = pk −∇E(wk+1) , (3.28b)

for initial values w0 and p0 ∈ ∂J(w0), where ∂J denotes the subdifferential of J as defined in
Definition 3.1 and Dp

J(w, v) is the generalised Bregman distance

Dp
J(w, v) = J(w)− J(v)− 〈p, w − v〉 ,

https://link.springer.com/article/10.1007/BF00940051
https://link.springer.com/article/10.1007/BF00940051
https://doi.org/10.1137/040605412

CHAPTER 3. UNSUPERVISED LEARNING 67

for p ∈ ∂J(v). We can derive a linearised variant of (3.28) for the choice J(w) = 1
τ

(
1
2‖w‖

2 +R(w)
)
−

E(w). Method (3.28) then reads

wk+1 = arg min
w∈Rn

{
E(w) +

1

2τ
‖w − wk‖2 +

1

τ
Dqk

R (w,wk)− E(w) + E(wk) + 〈∇E(wk), w − wk〉
}
,

= arg min
w∈Rn

{
1

2τ
‖w − wk‖2 +

1

τ
Dqk

R (w,wk) + 〈∇E(wk), w − wk〉
}
,

= arg min
w∈Rn

{
1

2τ
‖w − wk‖2 +

1

τ
Dqk

R (w,wk) +
1

τ
〈τ∇E(wk), w − wk〉+

1

2τ
‖τ∇E(wk)‖2

}
,

= arg min
w∈Rn

{
1

2

∥∥∥w − (wk − τ∇E(wk)
)∥∥∥2

+Dqk

R (w,wk)

}
,

= (I + ∂R)−1
(
wk + qk − τ∇E(wk)

)
, (3.29a)

qk+1 = qk −
(
wk+1 − wk + τ∇E(wk)

)
, (3.29b)

for subgradients qk ∈ ∂R(wk) and the short-hand notation

(I + ∂R)−1(z) := arg min
x∈Rn

{
1

2
‖x− z‖2 +R(x)

}
for the proximal map as defined in Section 2.7.3. In the following, we want to focus on the special
case E(w) = 1

2‖Aw− b‖
2, for a matrix A ∈ Rs×n and a vector b ∈ Rs. For this special case, (3.29)

reads

wk+1 = (I + ∂R)−1
(
wk + qk − τA>(Awk − b)

)
, (3.30a)

qk+1 = qk −
(
wk+1 − wk + τA>(Awk − b)

)
. (3.30b)

If we assume that (wk + qk)/τ ∈ R(A>), we can substitute τA>bk = wk + qk − τA>(Awk − b),
which modifies (3.30) to

wk+1 = (I + ∂R)−1
(
τA>bk

)
, (3.31a)

bk+1 = bk −
(
Awk+1 − b

)
, (3.31b)

with initial value b0 = b. Combining both equations of (3.31) into one yields

bk+1 = bk −
(
A (I + ∂R)−1

(
τA>bk

)
− b
)
. (3.32)

The reason behind reformulating (3.30) to (3.32) is that (3.32) is just gradient descent, i.e. Algo-
rithm 1, applied to a very specific energy that we characterise with the following lemma.

Lemma 3.5 (Linearised Bregman iteration as gradient descent). The linearised Bregman iteration
in the form of (3.32) is a gradient descent method with step-size one, i.e.

bk+1 = bk −∇Gτ (bk) ,

applied to the energy

Gτ (bk) :=
τ

2
‖A>bk‖2 − 〈bk, b〉 − 1

τ
R̃(τA>bk) .

68 3.2. MATRIX FACTORISATION

Here R̃ denotes the Moreau-Yosida regularisation of the function R, i.e.

R̃(z) := inf
x∈Rn

{
R(x) +

1

2
‖x− z‖2

}
,

= R
(
(I + ∂R)−1(z)

)
+

1

2

∥∥(I + ∂R)−1(z)− z
∥∥2

.

Proof. The proof is relatively straight-forward if we can compute the gradient of R̃, since the
gradient of τ

2‖A
>bk‖2 − 〈bk, b〉 simply reads τAA>bk − b. In order to compute the gradient ∇R̃,

we first rewrite R̃ to

R̃(z) = inf
x∈Rn

{
R(x) +

1

2
‖x− z‖2

}
,

= inf
x∈Rn

{
R(x) +

1

2
‖x‖2 − 〈x, z〉+

1

2
‖z‖2

}
,

=
1

2
‖z‖2 − sup

x∈Rn

{
〈x, z〉 −R(x)− 1

2
‖x‖2

}
,

=
1

2
‖z‖2 −

(
1

2
‖ · ‖2 +R

)∗
(z) .

Here F ∗(z) := supx∈Rn〈x, z〉−F (x) denotes the convex conjugate or Fenchel conjugate of a function
F . Note that by definition, we observe ∇F ∗(z) = x∗, where x∗ = arg maxx∈Rn {〈x, z〉 − F (x)}. In
case of F (x) = 1

2‖x‖
2 +R(x), this problem reads

x∗ = arg max
x∈Rn

{
〈x, z〉 − 1

2
‖x‖2 −R(x)

}
,

= arg max
x∈Rn

{
−1

2
‖x− z‖2 −R(x)

}
,

= arg min
x∈Rn

{
1

2
‖x− z‖2 −R(x)

}
,

= (I + ∂R)−1(z) .

For the gradient of R̃ we therefore observe

∇R̃(z) = z − (I + ∂R)−1(z) .

As an immediate consequence of the chain rule we have ∇
((

1
τ R̃
)
◦
(
τA>

))
(bk) = A∇R̃(τA>bk),

and therefore conclude

∇Gτ (bk) = τAA>bk − b− τAA>bk +A(I + ∂R)−1
(
τA>bk

)
,

= A(I + ∂R)−1
(
τA>bk

)
− b ,

which also concludes the proof.

Another important result for Algorithm (3.29) applied to functions of the form E(w) = 1
2‖Aw−

b‖2 is that if we converge to a solution ŵ that satisfies Aŵ = b after a finite number of iterations,
then this solution minimises 1

2‖ · ‖
2 +R amongst all solution of Aw = b.

https://en.wikipedia.org/wiki/Convex_conjugate
https://en.wikipedia.org/wiki/Convex_conjugate

CHAPTER 3. UNSUPERVISED LEARNING 69

Lemma 3.6. We assume that w0 + q0 ∈ R(A>). Suppose that after a finite number of iterations
k∗, the iterate wk∗ of Algorithm (3.29) for E(w) = 1

2‖Aw − b‖
2 satisfies Awk∗ = b. Then wk

∗

satisfies

1

2
‖wk∗‖2 +R(wk

∗
) ≤ 1

2
‖w‖2 +R(w) ,

for all w that satisfy Aw = b.

Proof. From (3.30) we easily verify

wk + qk = w0 + q0 − τA>
k−1∑
n=0

(Awn − b) (3.33)

via induction. Since J(w) = 1
τ

(
1
2‖w‖

2 +R(w)
)
−E(w) is convex, we know that Dq

J(w, v) ≥ 0 for
all u, v with q ∈ ∂R(v). This is in particular true for any w that satisfies Aw = b and v = wk

∗ .
Hence, we observe

J(wk
∗
) ≤ J(w)−

〈
wk
∗

+ qk
∗

τ
−A>(Awk

∗ − b), w − wk∗
〉

= J(w)− 1

τ
〈w0 + q0, w − wk∗〉 −

〈
A>

k∗∑
n=0

(Awn − b), w − wk∗
〉
,

where we have used Equation (3.33). Since we made the assumption that w0 + q0 ∈ R(A>), there
exists an element ξ with w0 + q0 = A>ξ, and we further conclude

J(wk
∗
) ≤ J(w)− 1

τ
〈ξ, Aw −Awk∗〉 −

〈
k∗∑
n=0

(Awn − b), Aw −Awk∗
〉
,

= J(w) ,

since Aw = b and Awk∗ = b. Substituting J(w) = 1
τ

(
1
2‖w‖

2 +R(w)
)
− E(w) yields

1

2
‖wk∗‖2 +R(wk

∗
)− τE(wk

∗
) ≤ 1

2
‖w‖2 +R(w)− τE(w) .

Both E(wk
∗
) and E(w) are zero since Aw = b and Awk∗ = b; hence, we have verified the assertion.

In the following, we want to apply Algorithm (3.32) to the robust principal component analysis
problem (3.22).

3.2.5 A Bregman algorithm for robust PCA

In order to solve (3.22), we choose w = (L, S) and E and J as

E(L, S) =
1

2
‖L+ S −X‖2Fro

and

J(L, S) =
1

τ

(
1

2
‖L‖2Fro + γα‖L‖∗ +

1

2
‖S‖2Fro + γ‖S‖1

)
− E(L, S) ,

70 3.2. MATRIX FACTORISATION

Algorithm 7 Robust principal component analysis.
Specify: parameters γ > 0, α > 0, index K
Initialise: X0 = X, τ = 1/2
Iterate:
1: for k = 0, . . . ,K − 1 do
2: Lk+1 = (I + γ α ∂‖ · ‖∗)−1(τXk)
3: Sk+1 = (I + γ ∂‖ · ‖1)−1(τXk)
4: Xk+1 = Xk −

(
Lk+1 + Sk+1 −X

)
5: end for
return LK , SK .

for constants τ > 0 and γ > 0. With the choices of E and J , we are exactly in the setting of (3.30)
for A =

(
I I

)
and b = X, and therefore can numerically solve (3.22) by iterating the updates

(3.31), which for our choice of E and J read

Lk+1 = (I + γ α ∂‖ · ‖∗)−1(τXk) , (3.34a)

Sk+1 = (I + γ ∂‖ · ‖1)−1(τXk) , (3.34b)

Xk+1 = Xk −
(
Lk+1 + Sk+1 −X

)
, (3.34c)

for X0 := X. Procedure (3.34) is summarised in Algorithm 7. Note that Algorithm 7 is an
extremely simple procedure. It consists of computing the singular value decomposition of τXk in
every iteration, and soft-thresholding the singular values in the sense of (3.26) with threshold αγ,
and soft-thresholding all entries of τXk with threshold γ. Subsequently, the matrix Xk is updated
by subtracting the residual Lk+1 + Sk+1 −X from it.

In identical fashion to the proof of Theorem 2.3 we can prove that Algorithm 7 converges at
a rate of 1/k for τ ≤ 1/‖A‖2 = 1/2, where k denotes the number of iterations. What remains
to be shown is whether the limit of (3.34) converges to a solution of (3.22). This is addressed by
Lemma 3.6. Thanks to Lemma 3.6 we know that if we converge to a solution of Lk∗ + Sk

∗
= X,

we do converge to a solution that guarantees

1

2γ
‖Sk∗‖2Fro + ‖Sk∗‖1 +

1

2γ
‖Lk∗‖2Fro + α‖Lk∗‖∗ ≤

1

2γ
‖S‖2Fro + ‖S‖1 +

1

2γ
‖L‖2Fro + α‖L‖∗ ,

for all L, S that satisfy L+ S = X. This is not exactly identical to

‖Sk∗‖1 + α‖Lk∗‖∗ ≤ ‖S‖1 + α‖L‖∗ ,

but for large γ it is a very good and tight approximation.
In the next section, we want to modify Algorithm 7 in order to guarantee a convergence rate

of order 1/k2. Before we do so, we first study how to accelerate standard gradient descent.

3.2.6 Nesterov accelerated gradient descent

In this section we want to consider a modification of Algorithm 1, first proposed by Yurii Nesterov
in Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). In Doklady AN USSR, volume 269, pages 543–547, 1983, with a convergence

http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf
http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

CHAPTER 3. UNSUPERVISED LEARNING 71

Algorithm 8 Nesterov-accelerated gradient descent
Specify: Differentiable, convex function E : Rn → R, step-size τ > 0, index K, sequence {tk}Kk=1

Initialise: w0 ∈ Rn
Iterate:
1: for k = 0, . . . ,K − 1 do
2: wk = vk−1 − τ∇E(vk−1)

3: vk =
(

1− 1
tk+1

)
wk + 1

tk+1
uk

4: uk = wk−1 + tk
(
wk − wk−1

)
5: end for
return wK .

rate of order 1/k2. This means we focus on the gradient descent procedure wk+1 = wk−τ∇E(wk)
for now, but this time we consider a modification of the form

wk+1 = (1 + βk)w
k − βkwk−1 − τ∇E

(
(1 + βk)w

k − βkwk−1
)
,

respectively

wk = vk−1 − τ∇E(vk−1) , (3.35a)

vk =

(
1− 1

tk+1

)
wk +

1

tk+1
uk , (3.35b)

uk = wk−1 + tk

(
wk − wk−1

)
, (3.35c)

for βk := tk−1
tk+1

. We have summarised (3.35) in Algorithm 8. Note that the computational
complexity is pretty-much the same as for gradient descent. The only change is that we replace
the previous iterate wk with a linear combination of the previous iterate and the iterate before
that. Remarkably, this modification, with the right choice of sequence {tk}∞k=1 is sufficient to show
the following improved convergence result.

Theorem 3.2 (Convergence of Algorithm 8). Suppose E : C ⊂ Rn → R is a convex and 1/τ -
smooth function with global minimiser ŵ and the sequence {tk}Kk=1 that satisfies

t2k − tk ≤ t2k−1 (3.36)

for all k = 2, . . . ,K and t1 = 1. Then the iterates {wk}Kk=1 of Algorithm 8 satisfy

t2Ke
K +

K−1∑
k=1

ρk+1e
k ≤ d0 − dK

τ
,

with the short-hand notations

ek := E(wk)− E(ŵ) ,

ρk := t2k−1 − t2k + tk ,

dk :=
1

2
‖ŵ − uk‖2 .

Before we prove Theorem 3.2 we verify the following intermediate result first.

72 3.2. MATRIX FACTORISATION

Corollary 3.1. Suppose the same assumptions hold true as for Theorem 3.2, and define w∗ :=
arg minw∈Rn

{
E(w) + 1

2τ ‖w − w‖
2
}
for some w ∈ Rn. Then we observe

E(w∗) +
1

2τ
‖w − w∗‖2 ≤ E(w) +

1

2τ
‖w − w‖2 ,

for any w ∈ Rn.

Proof. With Lemma 2.4 and J := 1
2τ ‖ · ‖

2 − E we can conclude

E(w∗) +DE(w,w∗) +DJ(w,w∗) +DJ(w∗, w)

= E(w∗) +
1

2τ
‖w − w∗‖2 +DJ(w∗, w)

= E(w) +DJ(w,w)

= E(w) +
1

2τ
‖w − w‖2 −DE(w,w)

≤ E(w) +
1

2τ
‖w − w‖2 ,

where the last inequality follows from the convexity of E and Corollary 2.1. With the same
argumentation we derive E(w∗) + 1

2τ ‖w − w∗‖2 ≤ E(w∗) + 1
2τ ‖w − w∗‖2 + DJ(w∗, w), which

concludes the proof.

Proof of Theorem 3.2 (non-examinable). We closely follow the proof of Chambolle and Dossal in
Antonin Chambolle and Charles Dossal. "On the convergence of the iterates of FISTA." (2015)
and apply Corollary 3.1 with w∗ = wk+1, w = vk and w =

(
1− 1

tk+1

)
wk + 1

tk+1
ŵ, which yields

w − w∗ =

(
1− 1

tk+1

)
wk +

1

tk+1
ŵ − wk+1 ,

=
1

tk+1
ŵ −

(
wk+1 − wk +

1

tk+1
wk
)
,

=
1

tk+1

(
ŵ − uk+1

)
,

and

w − w =

(
1− 1

tk+1

)
wk +

1

tk+1
ŵ − vk

=

(
1− 1

tk+1

)
wk +

1

tk+1
ŵ −

(
1− 1

tk+1

)
wk − 1

tk+1
uk

=
1

tk+1

(
ŵ − uk

)
,

and consequently

E(wk+1) +
1

2 τ t2k+1

∥∥∥uk+1 − ŵ
∥∥∥2
≤ E

((
1− 1

tk+1

)
wk +

1

tk+1
ŵ

)
+

1

2 τ t2k+1

∥∥∥uk − ŵ∥∥∥2
.

Due to the convexity of E we can further estimate

E(wk+1) +
1

2 τ t2k+1

∥∥∥uk+1 − ŵ
∥∥∥2
≤
(

1− 1

tk+1

)
E(wk) +

1

tk+1
E(ŵ) +

1

2 τ t2k+1

∥∥∥uk − ŵ∥∥∥2
,

https://hal.inria.fr/hal-01060130/document

CHAPTER 3. UNSUPERVISED LEARNING 73

which we can rewrite to

E(wk+1)−
(

1− 1

tk+1

)
E(wk)− 1

tk+1
E(ŵ) ≤ 1

2 τ t2k+1

(∥∥∥uk − ŵ∥∥∥2
−
∥∥∥uk+1 − ŵ

∥∥∥2
)
,

=
1

2 τ t2k+1

(
dk − dk+1

)
.

Note that the left-hand-side is equivalent to

E(wk+1)− E(ŵ)−
(

1− 1

tk+1

)(
E(wk)− E(ŵ)

)
,

= ek+1 −
(

1− 1

tk+1

)
ek ;

hence, after multiplication with t2k+1 the estimate above reads

t2k+1e
k+1 −

(
t2k+1 − tk+1

)
ek ≤ 1

2τ

(
dk − dk+1

)
.

Summing up from k = 0, . . . ,K − 1 yields

t2Ke
K +

K−1∑
k=0

ρk+1w
k ≤ d0 − dK

2τ
,

which concludes the proof.

Several practical questions arise from this result. Which sequences {tk}Kk=1 satisfy (3.36)? And
do these sequences guarantee a convergence rate of 1/K2? For exmaple, the sequence defined by
t1 = 1 and

tk+1 =

√
t2k +

1

4
+

1

2
,

for all k = 2, . . . ,K − 1, satisfies (3.36). More generally, for any a ≥ 2 the sequence {tk}Kk=1 with
t1 = 1 and

tk =
k + a− 1

a

satisfies (3.36). Do these sequences guarantee a convergence rate of 1/K2 for Algorithm 8? The
answer is yes, which is obvious for the second sequence but in general it can shown by induction
that any sequence that satisfies (3.36) with t1 = 1 also satisfies tk ≥ k. Hence, we can conclude

eK =
(
E(wK)− E(ŵ)

)
≤ d0 − dK

τ K2
,

and consequently a convergence rate of 1/K2. It should be noted that for general, convex E
no first-order algorithms with a quicker convergence rate exist due to Nemirovsky and Yudin in
Arkadĭı Semenovich Nemirovsky and David Borisovich Yudin. "Problem complexity and method
efficiency in optimization." (1979). A proof for this lower bound can be found here. However,
additional conditions on E can result in faster convergence, as well as algorithms that incorporate
higher-order derivatives (such as the Newton-Raphson method) can have faster convergence rates.

https://blogs.princeton.edu/imabandit/2013/03/28/smoothfunctions/

74 3.2. MATRIX FACTORISATION

Algorithm 9 Accelerated robust principal component analysis.
Specify: parameters γ > 0, α > 0, index K
Initialise: Y 0 = X, τ = 1/2 and sequence {tk}K+1

k=1

Iterate:
1: for k = 0, . . . ,K − 1 do
2: Lk+1 = (I + γ α ∂‖ · ‖∗)−1(τY k)
3: Sk+1 = (I + γ ∂‖ · ‖1)−1(τY k)
4: Xk+1 = Y k −

(
Lk+1 + Sk+1 −X

)
5: βk+1 = (tk+1 − 1)/tk+1

6: Y k+1 = (1 + βk+1)Xk+1 − βk+1X
k

7: end for
return LK , SK .

3.2.7 An accelerated Bregman algorithm for robust PCA

Thanks to Lemma 3.5 we know that Algorithm 7 is actually a gradient descent method, albeit
a very strange-looking one. In the previous section we have learned how to accelerate gradient
descent, and we now want to apply this acceleration strategy to our problem of robust PCA. Note
that (3.34) in the form of (3.32) reads

Xk+1 = Xk −
(

(I + γ α ∂‖ · ‖∗)−1(τXk) + (I + γ ∂‖ · ‖1)−1(τXk)−X
)
.

Recall that the only difference between gradient descent and accelerated gradient descent is the
replacement of Xk with a linear combination of Xk and Xk−1 in the form of

Xk+1 = (1 + βk)X
k − βkXk−1−

(
(I + γ α ∂‖ · ‖∗)−1

(
τ((1 + βk)X

k − βkXk−1)
)

+(I + γ ∂‖ · ‖1)−1
(
τ((1 + βk)X

k − βkXk−1)
)
−X

)
.

(3.37)

If we define Y k := (1 + βk)X
k − βkXk−1, we can rewrite (3.37) to

Lk+1 = (I + γ α ∂‖ · ‖∗)−1(τY k) , (3.38a)

Sk+1 = (I + γ ∂‖ · ‖1)−1(τY k) , (3.38b)

Xk+1 = Y k −
(
Lk+1 + Sk+1 −X

)
, (3.38c)

Y k+1 = (1 + βk+1)Xk+1 − βk+1X
k . (3.38d)

Equations (3.38) are also summarised in Algorithm 9. As mentioned earlier, the complexity of the
individual steps of Algorithm 9 is about the same as in Algorithm 7, but the convergence speed
is of order 1/k2 instead of 1/k. This is a nice demonstration of the power of mathematics, as it is
hard to imaging one would come up with a modified strategy such as Algorithm 9 if one had not
studied the proof for the convergence of gradient descent.

In Figure 3.2 we have visualised an example for a robust PCA computation that you will re-
create as part of your coursework. Here we have taken the first human of the 28 human subjects
from the Yale Faces B dataset and stored its 64 different illumination images of dimension 192×168
for the first pose in a matrix X ∈ R32256×64. We then compute the robust PCA with Algorithm
7 and Algorithm 9 for the parameter choices γ = 10 and α =

√
192. The first of the 64 images

is visualised in Figure 3.2 (the first column of X), together with the robust PCA approximation

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

CHAPTER 3. UNSUPERVISED LEARNING 75

(a) Original (b) Approximation (c) Low-rank part (d) Sparse part

Figure 3.2: From left to right: the first illumination image of the first pose of the first human of the
Yale B faces database, its approximation which is the sum of a low-rank and a sparse matrix, the low-rank
matrix and the sparse matrix.

0 250 500 750 1000 1250 1500
Number of iterations

10 1

101

103

105

Lo
ga

rit
hm

 o
f l

os
s

Accelerated algorithm
Standard algorithm

100 101 102 103

Number of iterations (log-scale)

10 1

101

103

105

Lo
ga

rit
hm

 o
f l

os
s

Accelerated algorithm
Standard algorithm

Figure 3.3: This is an empirical validation of the different convergence rates of Algorithm 7 and Algorithm
9.

(first column of LK + SK), consisting of the low-rank (first column of LK) and the sparse part
(first column of SK).

In Figure 3.3 we see the comparison of the convergence rates of Algorithm 7 and Algorithm
9. Not that the loss value 1

2‖L
k + Sk −X‖2Fro that is achieved with Algorithm 7 after K = 1500

iterations is already achieved after around K = 225 iterations with Algorithm 9. This means we
have to compute 1225 fewer SVDs to achieve the same computational accuracy and therefore save
an awful lot of computational time.

3.2.8 Matrix completion

We conclude our very brief survey of matrix factorisation methods with a section on matrix com-
pletion. Matrix completion is a task that in the context of unsupervised machine learning finds
application in recommender systems. Recommender systems are, as the name suggests, systems
that aim at making recommendations to a customer or user. Often, this involves ranking books,
movies, songs, products etc. that a user has not read, seen, heard or purchased before, based on

76 3.2. MATRIX FACTORISATION

Algorithm 10 Matrix completion.
Specify: parameters γ > 0, stopping index K
Initialise: Set of known matrix indices Ω, z0 = PΩX and τ ≤ 1
Iterate:
1: for k = 0, . . . ,K − 1 do
2: Lk+1 = (I + γ ∂‖ · ‖∗)−1

(
τP>Ω z

k
)
,

3: zk+1 = zk −
(
PΩL

k+1 − z
)
,

4: end for
return LK .

ratings of other books, movies, songs, products by the same user and ratings of the seen and unseen
books, movies, songs, products by other users. Completing missing ratings can be formulated as
a matrix completion problem. We illustrate this with the following example. Suppose we have a
several customers of food places near Queen Mary’s Mile End campus and record some of their
ratings (from 1 to 10) as follows1:

The Curve Verdi’s Greedy Cow Döner Kebab KFC
Justin 6 ? ? 3 6
Kathrin ? 8 4 ? 3
Martin 4 5 6 7 ?
Primoz 3 ? 7 ? ?
Shabnam 3 5 ? 9 ?
Wolfram 7 ? ? ? ?

The rows of this matrix represent different customers while the columns represent different food
places. Every entry at row i and column j represents a rating by customer i of food place j.
As most customers have only visited a subset of all restaurants, we only have an incomplete set
of ratings, and hence, missing entries in the ratings matrix denoted with a question mark. The
problem of matrix completion is to fill the missing entries with some meaningful entries based on
some a-priori assumptions.

The first a-priori assumption that we want to make is that there is only a small number of
different customer types and that every rating can be modelled as a linear combination of the
ratings from all customer types. In mathematical terms this means that we assume that the
matrix with all ratings has a low rank. We want to formulate this problem as the optimisation
problem

L̂ = arg min
L∈Rn×s

{‖L‖∗ subject to PΩL = PΩX} . (3.39)

Here ‖ · ‖∗ denotes the nuclear norm that we have introduced before, which implicitly penalises
the rank of the matrix L̂ that we wish to recover. In order to guarantee that the entries for
which L̂ is known to match the provided ratings, we enforce the constraint PΩL̂ = PΩX. Here,
PΩ : Rn×s → Rr denotes the projection onto the r known entries of a matrix, provided by the set
Ω, and PΩX are the known ratings at these locations. If we consider the matrix

X =

(
−1 4 ?
? −2 7

)
1All ratings are made up and do not represent ratings of real people of the same name

CHAPTER 3. UNSUPERVISED LEARNING 77

for example, we know the indices Ω = {(1, 1), (1, 2), (2, 2), (2, 3)} and therefore can project onto
those, i.e.

PΩX =
(
−1 4 −2 7

)>
.

Note that this operator is linear and its transpose operation P>Ω : Rr → Rn×s is

P>Ω

z1

z2

z3

z4

 =

(
z1 z2 0
0 z3 z4

)
.

We can numerically solve (3.39) with the linearised Bregman iteration (3.29), which for (3.39)
reads

Lk+1 = (I + γ ∂‖ · ‖∗)−1
(
τP>Ω z

k
)
,

zk+1 = zk −
(
PΩL

k+1 − z
)
,

for z0 = z := PΩX, τ ≤ 1 and γ > 0, which is also summarised in Algorithm 10. It’s Nesterov-
accelerated counterpart reads

Lk+1 = (I + γ ∂‖ · ‖∗)−1
(
τP>Ω y

k
)
,

zk+1 = yk −
(
PΩL

k+1 − z
)
,

yk+1 = (1 + βk+1)zk+1 − βk+1z
k ,

which is summarised in Algorithm 11.
To wrap up this section, we want to show that we can also derive a matrix completion model

that is robust to sparse outliers, based on a generalisation of robust PCA that also includes the
projection operator PΩ. The model either reads

(L̂, Ŝ) = arg min
L,S∈Rn×s

{γ (‖S‖1 + α‖L‖∗) subject to PΩ(L+ S) = PΩX} ,

if we want to allow sparse outliers for all matrix entries, or

(L̂, ŝ) = arg min
L∈Rn×s, ~s∈Rr

{γ (‖~s ‖1 + α‖L‖∗) subject to ~s+ PΩL = PΩX} ,

if we want to allow sparse outliers only for the known entries. Algorithms can be derived in almost
identical fashion as in the robust PCA case.

3.3 Autoencoders

In Section 2.8 we have introduced the concept of (deep) neural networks in the context of supervised
machine learning. In this section, we want to look at deep neural networks for unsupervised
machine learning. A very popular way of using deep learning in unsupervised machine learning is
via the concept of an autoencoder . An autoencoder fw : Rn → Rn is a composition of two neural
networks; one network ewe : Rn → Rr is called the encoder and the other network dwd : Rr → Rn is

https://en.wikipedia.org/wiki/Autoencoder

78 3.3. AUTOENCODERS

Algorithm 11 Accelerated matrix completion.
Specify: parameters γ > 0, stopping index K
Initialise: Set of known matrix indices Ω, y0 = PΩX, τ ≤ 1 and sequence {tk}K+1

k=1

Iterate:
1: for k = 0, . . . ,K − 1 do
2: Lk+1 = (I + γ ∂‖ · ‖∗)−1

(
τP>Ω y

k
)
,

3: zk+1 = yk −
(
PΩL

k+1 − z
)
,

4: βk+1 = (tk+1 − 1)/tk+1

5: yk+1 = (1 + βk+1)zk+1 − βk+1z
k,

6: end for
return LK .

called the decoder. The autoencoder fw is simply the composition of the decoder and the encoder,
i.e. fw(x) := dwd (ewe(x)), for encoder weights we and decoder weights wd and overall weights
w = (we, wd). Note that we usually (but not always) assume r � n and that we usually compose
the neural networks of affine-linear transformations and point-wise nonlinear activation functions
as described in Section 2.8. Given a set of unlabelled data samples {xi}si=1, the goal of traditional
autoencoders is to approximate each sample, i.e. we aim to find parameters w = (we, wd) such
that

fw(xi) = dwd (ewe(xi)) ≈ xi

is (approximately) satisfied for all i ∈ {1, . . . , s}. For r < n, this is a nonlinear dimensionality
reduction problem. As in previous sections and chapters, we estimate the parameters by minimising
an empirical risk formulation of the form

min
w

1

s

s∑
i=1

` (xi, fw(xi)) ,

for appropriate loss functions `, such as `(x, y) = 1
2‖x− y‖

2 for example.

Example 3.3 (Linear autoencoder). Suppose both encoder and decoder are linear transforma-
tions, i.e. eWe = W>e and dWd

= Wd with We,Wd ∈ Rn×r. If we choose the mean-squared error
as the empirical risk that we minimise with respect to We and Wd, then we have to solve

min
We,Wd

1

2s

s∑
i=1

‖WdW
>
e xi − xi‖2 .

If we store all xi as columns in a matrix X ∈ Rn×s, we can rewrite the previous problem to

min
We,Wd

1

2s
‖WdW

>
e X −X‖2Fro .

This problem should look very familiar; what is the optimal solution for We and Wd?

Denoising autoencoder

Instead of training autoencoders to map signals onto the same signals, one can instead train
autoencoders that map noisy versions of the signals onto the clean versions of the signals. In

CHAPTER 3. UNSUPERVISED LEARNING 79

the simplest case, we assume that the input signals are corrupted by additive, normal-distributed
noise, which means that we train w by solving

min
w

1

s

s∑
i=1

` (xi, fw(xi + ni)) ,

where the ni’s are instances of a normal distributed random variable with mean zero and standard
deviation σ. Similar models can be designed for different noise models, or even for more general
operators that manipulate the inputs in a specific fashion.

In the following sections we want to address two key questions that we had not (or only
had partially) addressed in Section 2.8: an efficient computational strategy for the empirical
risk minimisation for large s and an efficient strategy to automatically compute the gradient of
complicated function compositions without having to implement the backpropagation algorithm
manually.

3.3.1 Stochastic gradient descent

In Section 2.8.1 we have shown how a deep (feed-forward) neural network can be trained with the
backpropagation algorithm and gradient descent. In practice, gradient descent is usually replaced
with a modification known as stochastic (sub-)gradient descent or variants of it. One downside
when using gradient descent for applications with extremely large datasets is that the computation
of the entire gradient multiple times may easily become infeasible. We basically envision a scenario
where the energy E is of the form of an empirical risk (2.18), i.e.

E(w) :=
1

s

s∑
i=1

ei(w) , (3.40)

for s functions ei : Rn → R, with extremely large s. If we were to apply gradient descent, we
would for each iteration have to compute ∇E. Instead, we could update our variables only w.r.t.
a partial gradient in the sense of

wk+1 = wk − τk∇ei(wk) , (3.41)

where i ∈ {1, . . . , s} are instances of a uniformly random variable and {τk}K−1
k=0 is a sequence of

positive step-size parameters. Alternatively, we could think of e1(w), e2(w), . . . , es(w) as a finite
number of outcomes of some random variable E(w) that occur with uniform probabilities pi = 1/s
for i = 1, . . . , s. The expected value of the corresponding gradients ∇ei(w), i.e.

Ei [∇ei(w)] =

s∑
j=1

∇ei(w)P (i = j) =

s∑
j=1

1

s
∇ej(w) = ∇

1

s

s∑
j=1

ej(w)

 = ∇E(w) ,

is then simply the gradient of E, and the stochastic gradient descent (SGD) performs a gradient
step on one of the finite outcomes of the random variable ∇E . We summarise SGD in Algorithm
12. Note that SGD, despite its name, is in general not a descent method, which means that we
cannot guarantee E(wk+1) ≤ E(wk) for subsequent iterates. We leave it as an exercise to the
reader to find a counterexample. We now want to prove a convergence result in expectation, for
which we first define the variance of a vector v as Varx(v(x)) := Ex

[
‖v(x)‖2

]
− ‖Ex[v(x)]‖2 and

the weighted average of the iterates as wK :=
(∑K

k=1 τk w
k
)
/
(∑K−1

k=0 τk

)
. Then we can show the

following result.

80 3.3. AUTOENCODERS

Algorithm 12 Stochastic gradient descent
Specify: Function E : Rn → R of the form (3.40), where each ei is continuously differentiable
and convex, index K, positive step-sizes {τk}K−1

k=0 ,
Initialise: w0 ∈ Rn
Iterate:
1: for k = 0, . . . ,K − 1 do
2: Pick index i ∼ U
3: wk+1 = wk − τk∇ei(wk)
4: end for
return wK .

Theorem 3.3. Let E : Rn → R be a convex function of the form (3.40) which is 1/τ -smooth
in the sense of Definition 2.7 for τ > 0. Suppose ŵ denotes a global minimiser of E and that
Vari(∇ei(w)) ≤ σ2 is satisfied for some positive constant σ and all i ∈ {1, . . . , s}. Then the
weighted average of the iterates wK :=

(∑K
k=1 τk w

k
)
/
(∑K−1

k=0 τk

)
for iterates wk of Algorithm

12 satisfy

Ei
[
E(wK)

]
− E(ŵ) ≤ ‖w

0 − ŵ‖2

2
∑K−1

k=0 τk
+
σ2
∑K−1

k=0 τ2
k

2
∑K−1

k=0 τk
. (3.42)

Proof (non-examinable). From the 1/τ -smoothness of E we can conclude DJ(w1, w2) ≥ 0 for
J(w) := 1

2τ ‖w‖
2 − E(w), which yields the estimates

E(wk+1) ≤ E(wk) + 〈∇E(wk), wk+1 − wk〉+
1

2τ
‖wk+1 − wk‖2 , (3.43)

for w1 = wk+1 and w2 = wk. Inserting the stochastic gradient descent update (3.41) into (3.43)
leads to

E(wk+1) ≤ E(wk)− τk〈∇E(wk),∇ei(wk)〉+
τ2
k

2τ
‖∇ei(wk)‖2 .

If we take the expected value on both sides of the inequality we observe

Ei
[
E(wk+1)

]
≤ E(wk)− τk‖∇E(wk)‖2 +

τ2
k

2τ
Ei
[
‖∇ei(wk)‖2

]
= E(wk)− τk‖∇E(wk)‖2 +

τ2
k

2τ

(∥∥∥Ei [∇ei(wk)]∥∥∥2
+ Vari

[
∇ei(wk)

])
,

= E(wk)− τk‖∇E(wk)‖2 +
τ2
k

2τ

(∥∥∥∇E(wk)
∥∥∥2

+ Vari
[
∇ei(wk)

])
,

≤ E(wk)− τk‖∇E(wk)‖2 +
τk
2

(∥∥∥∇E(wk)
∥∥∥2

+ Vari
[
∇ei(wk)

])
,

= E(wk)− τk
2
‖∇E(wk)‖2 +

τk
2
Vari

[
∇ei(wk)

]
,

≤ E(wk)− τk
2
‖∇E(wk)‖2 +

τk σ
2

2
.

Due to the convexity of E, we can further estimate

E(wk) ≤ E(ŵ) + 〈∇E(wk), ŵ − wk〉 . (3.44)

CHAPTER 3. UNSUPERVISED LEARNING 81

Combining estimates (3.43) and (3.44) then yields

Ei
[
E(wk+1)

]
≤ E(ŵ) + 〈∇E(wk), ŵ − wk〉 − τk

2
‖∇E(wk)‖2 +

τk σ
2

2
,

= E(ŵ) + 〈Ei[∇ei(wk)], ŵ − wk〉 −
τk
2
Ei‖∇ei(wk)‖2 +

τk σ
2

2
,

= E(ŵ) + Ei
[
〈∇ei(wk), ŵ − wk〉 −

τk
2
‖∇ei(wk)‖2

]
+
τk σ

2

2

= E(ŵ) + +Ei
[

1

τk
〈wk − wk+1, ŵ − wk〉 − 1

2τk
‖wk − wk+1‖2

]
+
τk σ

2

2

= E(ŵ) +
1

τk
Ei
[

1

2

(
‖wk − ŵ‖2 − ‖wk+1 − ŵ‖2

)]
+
τk σ

2

2
.

Summing up both sides of the estimate from k = 0 to k = K − 1 yields

K−1∑
k=0

τk

(
Ei
[
E(wk+1)

]
− E(ŵ)

)
≤ Ei

[
1

2

(
‖w0 − ŵ‖2 − ‖wK − ŵ‖2

)]
+
σ2
∑K−1

k=0 τ2
k

2
,

≤ Ei
[

1

2
‖w0 − ŵ‖2

]
+
σ2
∑K−1

k=0 τ2
k

2
,

=
1

2
‖w0 − ŵ‖2 +

σ2
∑K−1

k=0 τ2
k

2
.

Due to the convexity of E and the linearity of the expectation we can estimate

K−1∑
k=0

τk

(
Ei
[
E(wk+1)

]
− E(ŵ)

)
=

K−1∑
k=0

τk

(
Ei

[
K−1∑
k=0

τk∑K−1
k=0 τk

E(wk+1)

]
− E(ŵ)

)

≥
K−1∑
k=0

τk

(
Ei

[
E

(∑K−1
k=0 τk w

k+1∑K−1
k=0 τk

)]
− E(ŵ)

)
,

=

K−1∑
k=0

τk
(
Ei
[
E
(
wK
)]
− E(ŵ)

)
,

with the help of Jensen’s inequality. Combining this estimate with the previous one and dividing
by
∑K−1

k=0 τk then concludes the proof.

Note that constant step-sizes (τk = τ for all k) or fixed step-lengths (e.g. τk = τ/‖∇ei(wk)‖)
do not necessarily guarantee convergence, as we cannot guarantee that the right-hand-side of
(3.42) converges to zero for increasing k. We can, however, guarantee convergence for diminishing
step-sizes that ensure

lim
k→∞

τk = 0 , and
∞∑
k=0

τk =∞ , (3.45)

as for those diminishing step-sizes it can be shown that

lim
K→∞

∑K−1
k=0 τ2

k∑K−1
k=0 τk

= 0

https://en.wikipedia.org/wiki/Jensen's_inequality

82 3.3. AUTOENCODERS

is also satisfied. Examples for sequences that satisfy (3.45) are τk = τ/(k+1) or τk = τ/
√
k + 1 for

a constant τ > 0. Note, however, that we won’t be able to guarantee a convergence rate O(1/k)
as for the standard gradient descent algorithm, but only O(1/

√
k).

Note that we can derive a proximal stochastic gradient descent method in analogy to classical
gradient descent by wrapping a proximal map around the update.

3.3.2 Automatic differentiation

In this section we want to briefly describe the concept of automatic differentiation. Instead of
computing derivatives by hand or symbolically, automatic differentiation numerically evaluates
derivatives of (complicated) functions automatically. The key ingredient here is the chain rule
that allows us to automatically evaluate derivatives of function-compositions numerically at spe-
cific points. In terms of evaluation of the chain rule, one mostly distinguishes between forward
accumulation and reverse accumulation. In forward accumulation, one traverses through the chain
rule from inside to outside, while in reverse accumulation one traverses from outside to inside.

3.3.3 Dual numbers and forward accumulation

A dual number x is a number of the form

x = a+ εb ,

where ε is a constant similar to the imaginary unit i in complex numbers. But where we have
i2 = −1, we have ε2 = 0 for dual numbers. We refer to a as the real part and to b as the dual part
of x. You may wonder how the concept of dual numbers is useful for automatic differentiation.
We will answer this question indirectly with two examples. Suppose we have two dual numbers
x = a+ εb and y = c+ εd. Multiplying both numbers yields the product

xy = (a+ εb)(c+ εd) = ac+ ε(ad+ bc) + ε2︸︷︷︸
=0

bd = ac+ ε(ad+ bc) .

The product is another dual variable with the product ac as its real part and ad + bc as its dual
part. Note that for b = 1 and d = 0 the dual part reduces to c, whereas for b = 0 and d = 1
it reduces to a. If we were to ignore the real parts of x and y, we’d simply obtain the partial
derivatives with respect to a and b.
Lets look at the quotient of x and y as another example, i.e.

x

y
=
a+ εb

c+ εd
=

(a+ εb)(c− εd)

(c+ εd)(c− εd)
=
ac+ ε(bc− ad) + ε2bd

c2 − ε2d2
=
ac+ ε(bc− ad)

c2
=
a

c
+ ε

bc− ad
c2

.

Similar to the previous example, the real part of x/y is simply the quotient a/c of the real parts,
whereas the dual part resembles the quotient rule (bc − ad)/c2. For b = 1 and d = 0, the dual
component simplifies to c, while for b = 0 and d = 1 it simplifies to −a/c2. Again, these simplified
dual components are equal to the partial derivatives ∂

∂a
a
c and ∂

∂c
a
c .

We are now going to show that this is not just a coincidence, but indeed true for any dif-
ferentiable function that acts on a dual number. The Taylor series of an infinitely differentiable
function f(x) around a point y is defined as

f(x) =
∞∑
n=0

f (n)(y)

n!
(x− y)n ,

https://en.wikipedia.org/wiki/Taylor_series

CHAPTER 3. UNSUPERVISED LEARNING 83

where f (n) denotes the n-th derivative of f . If the argument x is a dual number x = a + εb, and
we consider the Taylor series around the point a, we observe

f(x) = f(a+ εb) =

∞∑
n=0

f (n)(a)bnεn

n!
= f(a) + εbf ′(a) .

Here, the last equality again follows from the fact that ε2 = 0. Hence, applying f to a dual number
yields a new dual number, where the real part is f applied to the real part and the dual part is
bf ′(a). In the previous examples, we had f(x) = xy and f(x) = x/y.
For function compositions f(x) = h(g(x)) acting on a dual variable x = a+ εb we observe

g(x) = g(a) + εbg′(a) ,

and

h(g(x)) = h(g(a) + εbg′(a)) = h(g(a)) + εh′(g(a))bg′(a) .

In terms of computation, when computing this composition of functions acting on dual numbers,
we first evaluate g on x and then h on g(a) + εbg′(a). In terms of differentiation, we first compute
the derivative g′(a) and then the derivative h′(g(a)). This order of computing the derivatives in
order to evaluate the chain rule is also known as forward accumulation. For a function composition
y = h(g(x)), we can define w0 = x, w1 = g(w0) and w2 = h(w1) = y. Computing the chain rule
yields

dy

dx
=
dw2

dw0
=
dw2

dw1

dw1

dw0
.

In forward accumulation, one evaluates the chain rule via the recursive relation

dwi
dx

=
dwi
dwi−1

dwi−1

dx
,

i.e. we first evaluate dw1/dx, then dw2/dw1. This coincides with the order of computation when
evaluating dual numbers, which is why forward accumulation and automatic differentiation with
dual numbers are effectively the same thing.

3.3.4 Reverse accumulation

As the name suggests, reverse accumulation works in opposite order compared to forward accu-
mulation, i.e. we evaluate the chain rule via the recursive relation

dy

dwi
=

dy

dwi+1

dwi+1

dwi
.

This means we first evaluate dy/dw1, then dw1/dw0. We have already seen an example of reverse
accumulation in Section 2.8.1: the backpropagation algorithm. Evaluating the forward pass and
subsequent computation of the partial derivatives in reverse order is a special case of reverse
accumulation.

	Mathematical preliminaries
	Linear algebra
	Calculus
	Probability & statistics

	Supervised learning
	Statistical motivation
	Linear & polynomial regression
	Polynomial regression
	Regression with general basis functions

	Convex analysis
	A comment on existence and uniqueness

	Ill-conditioned regression problems & regularisation
	Ridge regression

	Model selection
	Bias-variance decomposition
	The LASSO
	Gradient descent
	Gradient descent and the LASSO
	Proximal gradient descent

	Deep learning
	Training deep learning models

	Classification
	Nearest neighbour classification
	Logistic regression
	Support-vector machines (SVMs)
	Semi-supervised binary classification with graphs
	From semi-supervised to unsupervised classification

	Unsupervised learning
	Clustering
	k-means clustering
	Gaußian mixture models
	Spectral clustering

	Matrix factorisation
	Singular value decomposition (SVD) and principal component analysis (PCA)
	Sparse principal component analysis
	Robust principal component analysis
	The linearised Bregman iteration
	A Bregman algorithm for robust PCA
	Nesterov accelerated gradient descent
	An accelerated Bregman algorithm for robust PCA
	Matrix completion

	Autoencoders
	Stochastic gradient descent
	Automatic differentiation
	Dual numbers and forward accumulation
	Reverse accumulation

