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Question 1 [25 marks].

Consider a graph G(V, E) defined by the following list of undirected edges
e1 = (1, 2), e2 = (2, 3), e3 = (1, 3), e4 = (3, 4), e5 = (4, 5), e6 = (5, 6), e7 = (4, 6). The
edges are weighted as follows w1,2 = 10, w2,3 = 10, w1,3 = 5, w3,4 = 2, w4,5 = 20,
w5,6 = 15, w4,6 = 10

(a) Draw the graph and write down the incidence matrix M. [5]

(b) Using the incidence matrix write down the Laplacian matrix L. [5]

(c) Write down the adjacency matrix A and the matrix D whose diagonal elements
are the weighted degree (i.e., strength) of each node. Verify that L = D − A. [5]

(d) Assume that we gather partial information about some category c of nodes 1
and 4, namely c1 = 1 and c4 = 0. Using the network information in a
semi-supervised setting, you are tasked to predict the category of the other four
nodes. We know that this problem leads to the following equation:

P⊤
I1/I2

LPI1/I2ŵ = −P⊤
I1/I2

LPI2v (1)

where v is the vector of known categories.

• Write down the expressions for PI2 and PI1/I2 , [5]

• Find ŵ by solving the normal equation. [5]
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Solution:

(a) Variation of a problem discussed in the coursework. The graph is drawn in Figure 1.
The incidence matrix M reads

M =



−
√

10
√

10 0 0 0 0
0 −

√
10

√
10 0 0 0

−
√

5 0
√

5 0 0 0
0 0 −

√
2

√
2 0 0

0 0 0 −
√

20
√

20 0
0 0 0 0 −

√
15

√
15

0 0 0 −
√

10 0
√

10


(2)

(b) Variation of a problem discussed in the coursework. The Laplacian matrix is
L = M⊤M. Hence we have:

L =


15 −10 −5 0 0 0
−10 20 −10 0 0 0
−5 −10 17 −2 0 0
0 0 −2 32 −20 −10
0 0 0 −20 35 −15
0 0 0 −10 −15 25

 (3)

(c) Variation of a problem discussed in the coursework. The adjacency matrix is:

A =


0 10 5 0 0 0

10 0 10 0 0 0
5 10 0 2 0 0
0 0 2 0 20 10
0 0 0 20 0 15
0 0 0 10 15 0

 (4)

the weighted degree (i.e., strength) is

L =


15 0 0 0 0 0
0 20 0 0 0 0
0 0 17 0 0 0
0 0 0 32 0 0
0 0 0 0 35 0
0 0 0 0 0 25

 (5)

Clearly D − A = L

(d) Variation of a problem discussed in the coursework. The operator PI2 projects
v ∈ R2×1 into a yv ∈ R6×1 selecting the known data, hence we have

PI2 =


1 0
0 0
0 0
0 1
0 0
0 0

 (6)
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The operator PI1/I2 selects instead the unknown data, hence we have

PI1/I2 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 (7)

(e) Variation of a problem discussed in the coursework. The normal equation reads:
20 −10 0 0
−10 17 0 0

0 0 35 −15
0 0 −15 25

 ŵ = −


−10
−5
0
0

 (8)

which implies ŵ =
(

11
12 , 5

6 , 0, 0
)⊤

. Hence, we can infer that c2 = c3 = c1 = 1 and
c5 = c6 = c4 = 0

Figure 1: Representation of graph G
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Question 2 [40 marks].

(a) Considering the following data points p1 = −3, p2 = −1, p3 = 1, p4 = 2,
p5 = 3, p6 = 5, p7 = 8, cluster them applying k-means starting with centroids
µ
(0)
1 = 0 and µ

(0)
2 = 9. Write out all steps of the algorithm by hand. [10]

(b) Compute the Rand Index considering as P1 the partition outcome of the
clustering in the previous point and P2 = (C′

1, C′
2, C′

3) where C′
1 = (p1, p2),

C′
2 = (p3, p4) and C′

3 = (p5, p6, p7). Write out all steps by hand. [15]

(c) We are now given a representation of the points in a two dimensional space
p1 = (−1,−1)⊤, p2 = (−3,−2)⊤, p3 = (1, 0)⊤, p4 = (2, 0)⊤, p5 = (3, 4)⊤,
p6 = (5, 2)⊤, p7 = (8, 2)⊤. Cluster the data points applying k-means starting
with centroids µ

(0)
1 = (0,−1)⊤ and µ

(0)
2 = (1, 1)⊤. Write out all steps of the

algorithm by hand. [15]
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Solution:

(a) Variation of a problem discussed in the coursework. As first step we need to
compute the distance between all points and the two centroids d(1)ik where
i ∈ {1, 2, 3, 4, 5, 6, 7} and k ∈ {1, 2}

d(1)ik =



3 12
1 10
1 8
2 7
3 6
5 4
8 1


(9)

which implies

z(1)ik =



1 0
1 0
1 0
1 0
1 0
0 1
0 1


(10)

in words, the first fives data points at the first iteration of the algorithm are
closer to the first centroid, the last two data points instead are closer to the
second one. Given these new assignment, we can update the coordinates of the
two centroids obtaining

µ
(1)
1 =

∑j z(1)j1 pj

∑j z(1)j1

=
−3 − 1 + 1 + 2 + 3

5
=

2
5

µ
(1)
2 =

∑j z(1)j2 pj

∑j z(1)j2

=
5 + 8

2
=

13
2

(11)

we can now compute the distance between the points and the updated
centroids

d(2)ik =



17/5 19/2
7/5 15/2
3/5 11/2
8/5 9/2

13/5 7/2
23/5 3/2
38/5 3/2


(12)
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which implies

z(2)ik =



1 0
1 0
1 0
1 0
1 0
0 1
0 1


(13)

as z(2)ik = z(1)ik we are at convergence.

(b) Variation of a problem discussed in the coursework. To compute the Rand Index we
need to compare P1 = {C1, C2} with C1 = {p1, p2, p3, p4, p5} and C2 = {p6, p7}
with P2 = {C′

1, C′
2, C′

3} with C′
1 = {p1, p2} C′

2 = {p3, p4} and C′
3 = {p5, p6, p7}.

The true positives (pairs of points that are in the same clusters in both
partitions) are TP = 3 which are (p1, p2), (p3, p4) (p6, p7). The true negative
(pairs of points that are in different clusters in both) are TN = 8 which are
(p1, p6), (p1, p7), (p2, p6), (p2, p7), (p3, p6), (p3, p7), (p4, p6), (p4, p7). Hence,

RI =
TP + TN

N(N − 1)/2
=

11
21

≈ 0.524 (14)

(c) Variation of a problem discussed in the coursework. As first step we need to
compute the distance between all points and the two centroids d(1)ik where
i ∈ {1, 2, 3, 4, 5, 6, 7} and k ∈ {1, 2}

d(1)ik =



1 2
√

2√
10 5√
2 1√
5

√
2√

34
√

13√
34

√
17√

73 5
√

2


(15)

which implies

z(1)ik =



1 0
1 0
0 1
0 1
0 1
0 1
0 1


(16)

Given these new assignment, we can update the coordinates of the two
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centroids obtaining

µ
(1)
1 =

(
−1 − 3

2
,
−1 − 2

2

)⊤
=

(
−2,−3

2

)⊤

µ
(1)
2 =

(
1 + 2 + 3 + 5 + 8

5
,

3 + 2 + 2
5

)⊤
=

(
19
5

,
7
5

)⊤
(17)

Considering the geometry of the problem the new assignment will not change
with the new position of centroids, hence the k-means converges after one
iteration.
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Question 3 [20 marks]. Consider the following data points p1 = (1, 2)⊤,
p2 = (2, 3)⊤, p3 = (4, 1)⊤.

(a) Write down the correspondent X ∈ R2×3 data matrix, compute its singular
values, and the left singular vectors X. [10]

(b) Compute the matrix softτ(Σ) obtained by applying the soft thresholding
operator to each element of the matrix of singular values Σ. Set τ equal to the
last digit of your student ID. Compute the nuclear norm of
Dτ(X) = Usoftτ(Σ)V⊤ and compare it with the nuclear norm of the original
matrix (U and V are the left and right singular vectors respectively). [5]

(c) Compute a lower rank approximation L̂ ∈ R2×3 of the matrix X by hand,
considering rank(L̂) = 1 and such that ∥L̂ − X∥ ⩽ ∥L − X∥ for all L ∈ R2×3 and
rank(L) = 1. [5]
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Solution:

(a) Variation of a problem discussed in the coursework. The data matrix reads:

X =

(
1 2 4
2 3 1

)
(18)

(b) Variation of a problem discussed in the coursework. The singular values are
conveniently computed considering the eigenvalues of XX⊤. This squared
matrix is

XX⊤ =

(
21 12
12 14

)
(19)

The eigenvalues are the square of the singular values and are equal to σ2
1 = 30,

σ2
2 = 5. The left singular vectors are the correspondent eigenvalues which, after

normalisation, read u1 =
(

4
5 , 3

5

)⊤
and u2 =

(
−3

5 , 4
5

)⊤
.

(c) We have discussed the operator at length in the lectures and a related problem was
discussed in the coursework. The matrix Dτ(X) is obtained applying the singular
thresholding operator to the matrix of singular values in the SVD. This implies
soft thresholding each singular value. In practice

Dτ(X) = Usoftτ(Σ)V⊤ (20)

where softτ is the soft thresholding operator, defined as:

softτ(σi) =


σi − τ, if σi > τ

0, if − τ ⩽ σi ⩽ τ

σi + τ, if σi < −τ

(21)

The matrix Σ reads:

Σ =

(
30 0 0
0 5 0

)
(22)

Hence, we have to cases. In case the last digit of the ID is τ ⩽ 5 we have

softτ(Σ) =

(
30 − τ 0 0

0 5 − τ 0

)
(23)

In case the last digit of the ID is τ > 5 instead we have we have

softτ(Σ) =

(
30 − τ 0 0

0 0 0

)
(24)

If τ ⩽ 5 the nuclear norm of Dτ(X) is ∥Dτ(X)∥∗ =
√

30 − τ +
√

5 − τ. Instead if
τ > 5 is ∥Dτ(X)∥∗ =

√
30 − τ. Hence, the nuclear norm is always smaller than

the nuclear norm of the orginal matrix (∥X∥∗ =
√

30 +
√

5), unless τ = 0.
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(d) Variation of a problem discussed in the coursework. The best lower rank
approximation for rank equal to one is

L̂ = u1u⊤
1 X (25)

hence we can write

L̂ =

(4
5
3
5

) (4
5

3
5

) (1 2 4
2 3 1

)
=

1
25

(
40 68 76
30 51 57

)
(26)
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Question 4 [15 marks].

(a) Consider the matrix:

X =

(
1 5 0
0 1 1

)
(27)

diagonalise the matrix XX⊤ and discuss its connection with the SVD of X. [10]

(b) Consider a matrix M ∈ Rm×n. Show that Trace(MM⊤ + M⊤M) = 2 ∑r
i=1 σ2

i
where σi are its singular values. [5]
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Solution:

(a) We have discussed about this problem in the lectures. The matrix XX⊤ reads:

XX⊤ =

(
1 5 0
0 1 1

)1 0
5 1
0 1

 =

(
26 5
5 2

)
(28)

To diagonalise the matrix we need to find two other matrices such that
MM⊤ = PΛP−1. Since the matrix is symmetric we have MM⊤ = PΛP⊤ which
implies P⊤P = 1. The matrix P is the matrix formed by the eigenvectors of the
matrix we are asked to diagonalise while the matrix Λ is a diagonal matrix
whose elements are the eigenvalues. The eigenvalues of the matrix MM⊤ are
easily obtained as λ1 = 27 and λ2 = 1. The correspondent eigenvectors are
instead are P1 = 1√

26
(5, 1)⊤ and P2 = 1√

26
(1,−5)⊤. Hence, we have

XX⊤ =
1
26

(
5 1
1 −5

)(
27 0
0 1

)(
5 1
1 −5

)
(29)

The connections with the SVD of the matrix X is clear. Indeed if we write
X = UΣV⊤ we can write XX⊤ = UΣΣ⊤U⊤ where indeed ΣΣ⊤ is the diagonal
matrix with the eigenvalues of XX⊤ and the left singular vectors by the
definition are the correspondent eigenvectors.

(b) We have discussed similar problems in the lectures. The first observation is that
Trace(A + B) = Trace(A) + Trace(B). Furthermore, Trace(AB) = Trace(BA).
Hence, we have

Trace(MM⊤ + M⊤M) = 2Trace(MM⊤) (30)

Now, we can use the SVD of the matrix M = UΣV⊤:

Trace(MM⊤) = Trace(UΣV⊤VΣ⊤U⊤) = Trace(UΣΣ⊤U⊤) (31)

using the properties of traces we can write

Trace(MM⊤) = Trace(UΣΣ⊤U⊤) = Trace(ΣΣ⊤U⊤U) = Trace(ΣΣ⊤) (32)

The matrix ΣΣ⊤ is a diagonal matrix whose elements are the squared of the
singular values. Hence,

Trace(MM⊤) = Trace(ΣΣ⊤) =
r

∑
i=1

σ2
i (33)

which implies

Trace(MM⊤ + M⊤M) = 2
r

∑
i=1

σ2
i (34)

End of Paper.
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