
Late-Summer Examination period 2020

MTH793P: Advanced machine learning

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this assessment, you may use books, notes, and the internet. You
may use calculators and computers, but you should show your working for any
calculations you do. You must not seek or obtain help from anyone else.

At the start of your work, please copy out and sign the following declaration:

I declare that my submission is entirely my own, and I have not sought
or obtained help from anyone else.

All work should be handwritten, and should include your student number.

You have 24 hours in which to complete and submit this assessment. When you have
finished your work:

• scan your work, convert it to a single PDF file and upload this using the
upload tool on the QMplus page for the module;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

You are not expected to spend a long time working on this assessment. We expect
you to spend about 3 hours to complete the assessment, plus the time taken to scan
and upload your work. Please try to upload your work well before the end of the
assessment period, in case you experience computer problems. Only one attempt is
allowed – once you have submitted your work, it is final.

Examiners: M. Benning
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The notation log refers to the natural logarithm. The function rank(L) returns the
rank of a matrix L. All computations should be done by hand where possible, with
marks being awarded for intermediate steps in order to discourage computational
aids.

Question 1 [35 marks].

(a) Explicitly derive the expectation for an absolutely continuous random variable
X that follows an exponential distribution, i.e. the probability density functions
reads

ρ(x) :=

{
λ exp(−λx) x ≥ 0
0 otherwise

,

where λ is one added to the seventh digit of your student ID. [7]

(b) Explicitly derive the variance for an absolutely continuous random variable X
that follows an exponential distribution. [7]

(c) For a uniform (and absolutely continuous) random variable X on [0, 1] compute
the expectation of f (X) for

f (x) :=

{
d1 (1− log(x)) x ∈ [0, 1/d2]

0 otherwise
,

where d1 is one added to the eighth digit and d2 is one added to the seventh
digit of your student ID. Make use of the convention 0 log(0) = 0. [7]

(d) Compute the gradient of the function J : [−1, 1]n → [−1, 1]n defined as
J(x) := −∑n

j=1

√
1− x2

j . [7]

(e) Explicitly derive the Bregman distance DJ(x, y) with respect to the function J as
defined in Question 1 (d). [7]
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Question 2 [35 marks].

(a) You want to decide whether or not to ease lock-down restrictions. You base
your decision on three factors:

• Are people required to wear face-masks when going outside?

• Have covid-19 case numbers dropped in previous weeks?

• Is comprehensive testing and tracing in place?

You do not ease lock-down measures unless case numbers have dropped.
However, a drop in case numbers is only sufficient for easing lock-down
measures if either people are required to wear face masks when going outside
or if comprehensive testing and tracing is also in place.

Model this binary decision process with a perceptron and choose appropriate
weights to mimic the decision process accurately. Justify your choice of
weights. [7]

(b) Write down the incidence matrix for the following weighted, undirected graph:

Ferrari

Porsche

Lamborghini

Ducati

Harley Davidson

E3: 64

E4: 81

E1: 9

E2: 49

E5: 9

E6: 81

Order the columns of the incidence matrix alphabetically according to the
vertex name and the rows according to the edge numbering (E1, E2, E3, ...). [6]

(c) Compute the corresponding graph Laplacian for the incidence matrix in
Question 2(b). [7]
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(d) We want to use the graph from Question 2(b) to determine whether a node in
the graph belongs to the class “cars” or the class “motorbikes”. Suppose we are
in a semi-supervised setting, where the node “Lamborghini” is already labelled
vLamborghini = 1 (class “cars”) and the node “Ducati” is labelled as vDucati = 0
(class “motorbikes”). Determine the labels for all remaining nodes following
the procedure explained in the lecture notes, and classify each node. [8]

(e) Manually determine parameters w1 ∈ R, w2 ∈ R2, b1 ∈ R and b2 ∈ R of a
neural network of the form

f (x1, x2) = w1 max
(

0, w>2

(
x1
x2

)
+ b2

)
+ b1

so that it mimics the logical NAND function, i.e.

x1 x2 f (x1, x2)
0 0 1
1 0 1
0 1 1
1 1 0

.

[7]
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Question 3 [30 marks].

(a) Perform two steps of k-means clustering by hand for the five data points
x1 = −13, x2 = −17, x3 = 0, x4 = 3, and x5 = −2. Assume k = 2 clusters and
initialise your variables as

z0 :=
(

1 1 1 1 1
0 0 0 0 0

)>
,

and

µ0 :=
(

d
0

)
,

where d is one added to the eighth digit of your student ID number. For each
iteration, update the variable zl first, and then µl. Here l ∈ {1, 2} denotes the
iteration index. Does the iteration converge? [8]

(b) Find vectors u ∈ R2 and v ∈ R3 such that the following identity is satisfied for
all known values:

uv> =

(
−6 12 ?
2 −4 d

)
.

Here d is one added to the seventh digit of your student ID number. What value
do you obtain at the missing entry denoted by a question mark? [7]

(c) Compute an approximation L̂ ∈ R2×3 with rank(L̂) = 1 of the matrix

X := d
(
−2 3 2
2 2 3

)
by hand, where d is one added to the last digit of your student ID, that satisfies
‖L̂− X‖Fro ≤ ‖L− X‖Fro, for all L ∈ R2×3 with rank(L) = 1. [8]

(d) Formulate a proximal gradient descent algorithm for a matrix completion
problem of the form

(L̂, Ŝ) = arg min
L,S∈Rs×n

{
1
2
‖PΩ(L + S)− y‖2 + α1‖L‖∗ + α2‖S‖1

}
.

Here PΩ ∈ Rs×n → Rr is a (known) projection operator that projects the known
entries, specified by the index set Ω, of its argument to a vector of length r. The
vector of known entries is denoted by y ∈ Rr, α1 and α2 are positive constants,
and ‖ · ‖∗ and ‖ · ‖1 are the nuclear norm and the matrix one norm known from
the lecture respectively. How does the algorithm compare to the robust PCA
method introduced in the lecture? [7]

End of Paper.
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