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Online Alternative Assessments

MTH793P: Advanced Machine Learning

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your working
for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution to an
exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

You have 24 hours to complete and submit this assessment. When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

You are expected to spend about 3 hours to complete the assessment, plus the time
taken to scan and upload your work. Please try to upload your work well before the
end of the submission window, in case you experience computer problems. Only one
attempt is allowed – once you have submitted your work, it is final.

Examiners: M. Benning
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The notation log refers to the natural logarithm. The set of real numbers is denoted
by R. All computations should be done by hand where possible, with marks being
awarded for intermediate steps in order to discourage computational aids.

Question 1 [38 marks].

(a) Rewrite the function f (x) = dx−2x2

1+4x2 to g(a) + εh(a, b), where the argument x is a
dual number of the form x = a + εb with ε2 = 0, and specify both g and h. The
number d is one added to the last digit of your student ID number. [8]

(b) Compute the derivative f ′(a) of f as defined in Question 1(a) at argument a by
making use of your result of Question 1(a). [8]

(c) Rewrite the function f (x) = 1
2〈Qx, x〉, acting on a vector x = a + εb of dual

numbers, to g(a) + εh(a, b). Here, Q ∈ Rn×n is a square matrix. Specify both g
and h, and compute the partial derivative ∂/∂al f (a1, . . . , an) for some
l ∈ {1, . . . , n}. [6]

(d) Characterise all cases of the subdifferential ∂χ≥0 of the characteristic function

χ≥0(x) :=

{
0 x ≥ 0
∞ otherwise

.

[8]

(e) Compute the generalised Bregman distance Dp
f (x, y) with respect to the

function f (x) = |x| for a specific subgradient p ∈ ∂ f (y). Make sure to
characterise all four different cases. [8]
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Solution:

(a) We compute

f (a + εb) =
d(a + εb)− 2(a + εb)2

1 + 4(a + εb)2

=
da + εdb− 2a2 − ε4ab

1 + 4a2 + ε 8ab
=

da− 2a2 + ε (db− 4ab)
1 + 4a2 + ε 8ab

=
u + ε v
w + ε z

,

for u := da− 2a2, v := db− 4ab, w := 1 + 4a2 and z := 8ab. We further compute

f (a + εb) =
u + ε v
w + ε z

=
(u + ε v)(w− ε z)
(w + ε z)(w− ε z)

=
uw + ε(vw− uz)

w2

=
u
w
+ ε

vw− uz
w2

=
da− 2a2

1 + 4a2 + ε
(db− 4ab)(1 + 4a2)− (da− 2a2)8ab

(1 + 4a2)2

=
da− 2a2

1 + 4a2 + ε b
d− 4a(1 + ad)
(1 + 4a2)2

= g(a) + εh(a, b) ,

for g(a) = (da− 2a2)/(1 + 4a2) and h(a, b) = b(d− 4a(1 + ad))/(1 + 4a2)2.

This exercise is similar to a future coursework exercise.

(b) From the lecture notes we know that h(a, 1) = f ′(a). Hence, the derivative of f
w.r.t. the argument a is

f ′(a) = h(a, 1) =
d− 4a(1 + ad)
(1 + 4a2)2 .

This exercise is similar to a future coursework exercise.

(c) Similar to the previous exercise we conclude

f (x) = f (a + εb) =
1
2
〈Q(a + εb), a + εb〉

=
1
2
〈Q(a + εb), a〉+ ε

2
〈Q(a + εb), b〉

=
1
2
〈Qa, a〉+ ε

2
〈Qb, a〉+ ε

2
〈Qa, b〉+ ε2

2︸︷︷︸
=0

〈Qb, b〉

=
1
2
〈Qa, a〉+ ε

(
1
2
〈Qa, b〉+ 1

2
〈Qb, a〉

)
= g(a) + εh(a, b) ,
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for g(a) = 1
2〈Qa, a〉 and h(a, b) = 1

2 (〈Qa, b〉+ 〈Qb, a〉). If we specify
el = (0 . . . 0 1︸︷︷︸

l−th position

0 . . . 0), we can compute the l-th partial derivative by

evaluating h(a, el), which reads

h(a, el) =
1
2
(〈Qa, el〉+ 〈Qel, a〉) = 1

2

(
n

∑
i=1

n

∑
j=1

qijaj(el)i +
n

∑
i=1

n

∑
j=1

qij(el)jai

)

=
1
2

(
n

∑
j=1

ql jaj +
n

∑
i=1

qilai

)

=

(
1
2

(
Q + Q>

)
a
)

l
.

If Q is symmetric, we have Q = Q> and the l-th partial derivative simplifies to
(Qa)l.

This exercise is similar to a future coursework exercise.

(d) The definition of the subdifferential for the characteristic function χ≥0 reads

∂χ≥0(x) = {p ∈ R | χ≥0(y) ≥ χ≥0(x) + p(y− x) , ∀y ∈ R} .

We characterise this subdifferential by case analysis.
Case 1: suppose x < 0, then ∂χ≥0(x) = ∅, since the right-hand-side of the
inequality will be +∞ regardless of the choice of p, while the left-hand-side is 0
for every y > 0.
Case 2: suppose x > 0, then p = 0 satisfies the inequality for all y ∈ R. Hence,
we observe ∂χ≥0(x) = {0} in this case.
Case 3: suppose x = 0. In this case, the inequality reads χ≥0(y) ≥ py for all
y ∈ R. For this to be valid for all y ∈ R, p can only take non-positive values, in
order to guarantee that yp ≤ 0 for y > 0. Hence, we observe ∂χ≥0(x) = (−∞, 0]
for x = 0.
Combining all cases yields

∂χ≥0(x) =


{0} x > 0
(−∞, 0] x = 0
∅ x < 0

.

This exercise is similar to Exercise 1.3 on Coursework 5.

(e) The generalised Bregman distance with respect to the function f (x) = |x| reads

Dp
f (x, y) = |x| − |y| − p(x− y) ,

for p ∈ ∂|y|. From the lecture notes we know

∂|y| =


{1} x > 0
[−1, 1] x = 0
{−1} x < 0

.
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Hence, for y > 0 we have p = 1 and therefore observe

Dp
f (x, y) = |x| − y− (x− y) = |x| − x =

{
0 x ≥ 0
−2x x < 0

.

In similar fashion we conclude for y < 0 that we have p = −1 and

Dp
f (x, y) = |x|+ y + (x− y) = |x|+ x =

{
2x x ≥ 0
0 x < 0

.

For y = 0, the Bregman distance depends on the particular subgradient
p ∈ [−1, 1]. We observe

Dp
f (x, y) = |x| − px ,

which always equals zero if x = 0 or if p = x/|x| for x 6= 0. For x > 0 we have

Dp
f (x, y) = (1− p)x ,

while for x < 0 we get

Dp
f (x, y) = −(1 + p)x .

Combining all four cases yields

Dp
f (x, y) =


0 (sign(x) = sign(y)) ∨ (x = 0)
2|x| ((x > 0) ∧ (0 > y)) ∨ ((y > 0) ∧ (0 > x))
(1− p)x (x > 0) ∧ (y = 0)
−(1 + p)x (x < 0) ∧ (y = 0)

.

This exercise is similar to a future coursework exercise.
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Question 2 [24 marks].

(a) It is the start of the Covid-19 vaccine role-out program and you want to decide
whether or not to get vaccinated. You base your decision on three factors:

• Am I in any of the groups (age above threshold, living in care home,
front-line worker etc.) eligible for the vaccine?

• Is the scientific advice in favour of getting vaccinated?

• Do people in my WhatsApp group chat think that I should get vaccinated?

Suppose you only get vaccinated if you are in any of the eligible vaccination
groups and only if the scientific advice is in favour of you getting vaccinated.
However, you really do not care about what people in your WhatsApp group
chat think about you getting vaccinated or not.

Model this binary decision process with a perceptron and choose some
appropriate weights to mimic the decision process accurately. [8]

(b) Write down the incidence matrix for the following weighted, undirected graph:

Siberian Husky

Siamese

British Shorthair

Border Collie

Great Dane

E4: 9 E5: 16

E7: 81

E8: 64

E3: 1
E2: 81

E6: 9

E1: 64

E9: 64

Use the definition of an incidence matrix from the lecture notes and order the
columns of the incidence matrix alphabetically according to the vertex name
and the rows according to the edge numbering (E1, E2, E3, ...). [7]
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(c) Compute the corresponding graph Laplacian for the incidence matrix in
Question 2(b). [8]

(d) We want to use the graph from Question 2(b) to determine whether a node in
the graph belongs to the class ”dogs” or the class ”cats”. Suppose we are in a
semi-supervised setting, where the node ”Great Dane” is already labelled
vGreat Dane = 1 (class ”dogs”) and the node ”Siamese” is labelled as vSiamese = 0
(class ”cats”). Determine the remaining labels with the same procedure as
described in the lecture notes and classify each node. [8]

Solution:

(a) This binary decision process can for example be modelled with the following
perceptron:

f (x1, x2, x3) =

{
0 3x1 + 3x2 + x3 ≤ 5
1 3x1 + 3x2 + x3 > 5

,

where x1, x2, x3 ∈ {0, 1} represent variables associated to the three factors
mentioned in the problem description. Different states are represented as
follows:

f (x1, x2, x3) x1 x2 x3
1 1 1 1
1 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

Hence, one would never get vaccinated if either the scientific advice is not in
favour or if one is not in any of the eligible groups. But the WhatApp group
opinion has no influence on the decision.

This exercise is similar to a future coursework exercise.
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(b) The incidence matrix for the displayed graph is

Mw =



E1 −8 8 0 0 0
E2 0 −9 0 9 0
E3 −1 0 0 1 0
E4 0 0 0 −3 3
E5 0 −4 0 0 4
E6 0 −3 3 0 0
E7 −9 0 0 0 9
E8 0 0 −8 0 8
E9 −8 0 8 0 0

B. Collie B. Shorthair G. Dane Siamese S. Husky


This question is similar to Exercise 1.1 of Coursework 1.

(c) The corresponding graph Laplacian then reads

Lw = M>w Mw =


B. Collie 210 −64 −64 −1 −81

B. Shorthair −64 170 −9 −81 −16
G. Dane −64 −9 137 0 −64
Siamese −1 −81 0 91 −9
S. Husky −81 −16 −64 −9 170

B. Collie B. Shorthair G. Dane Siamese S. Husky


This question is similar to Exercise 1.2 of Coursework 1.

(d) From the lecture notes we know that the label vector v ∈ R5 can be
decomposed as

v = P>R⊥ ṽ + P>R y ,

where PR denotes the projection of v onto the known indices, and PR⊥ onto the
unknown indices. The known indices are denoted by y, the unknown by ṽ. For

v =


vBorder Collie

vBritish Shorthair
vGreat Dane

vSiamese
vSiberian Husky


we know the third and fourth entry; the third belongs to the class ”dogs” and
therefore takes on the value vGreat Dane = 1, whereas the fourth entry belongs to
the class ”cats”, hence vSiamse = 0. Thus, for y =

(
1 0

)> we have

v =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

 ṽ +


0 0
0 0
1 0
0 1
0 0


(

1
0

)
.
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From the lecture notes we also know that we can estimate ṽ via

ṽ = arg min
v

∥∥∥Mw

(
P>R⊥v + P>R y

)∥∥∥2
,

= −
(

PR⊥LwP>R⊥
)−1 (

PR⊥LwP>R y
)

,

which for our matrices reads 210 −64 −81
−64 170 −16
−81 −16 170

 ṽ =

64
9

64

 ,

Solving this linear system leads to the (approximate) solution

ṽ ≈

0.7157
0.3934
0.7545

 .

Rounding all values above 1/2 to one and below 1/2 to zero then yields the
classification

v =


vBorder Collie

vBritish Shorthair
vGreat Dane

vSiamese
vSiberian Husky

 =


1
0
1
0
1

 .

This question is similar to Question 1.3 of Coursework 1.
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Question 3 [26 marks].

(a) Perform k-means clustering by hand for the five data points x1 =

(
1
0

)
,

x2 =

(
−7
3

)
, x3 =

(
0
−1

)
, x4 =

(
13
15

)
, and x5 =

(
−11
17

)
. Assume k = 2 clusters

and initialise your centroids as

µ0
1 :=

(
d
0

)
and µ0

2 :=
(

0
−d

)
,

where d is one added to the eighth digit of your student ID number. For each
iteration, update the assignments first, and then the centroids. Perform as many
iterations as are required for the k-means clustering algorithm to converge. [8]

(b) Complete the following matrix such that it has minimal rank: 1 −2 d −7
−3 6 ? 21
? −10 ? −35

 .

Here d is the maximum of the seventh digit of your student ID number and 1.
Justify your choice. [6]

(c) Show that for vectors x, y ∈ Rk, the vector z ∈ Rk defined as

zi =
xi exp (yi)

∑k
j=1 xj exp

(
yj
) = softmax (log(x)y)i ,

for all i ∈ {1, . . . , k}, is the solution of the optimisation problem

z = arg min
z̃∈Rk

{
D f (z̃, x)− 〈z̃, y〉 subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}
,

where D f denotes the Bregman distance with respect to the convex function
f (z) := ∑k

j=1 zj log(zj).
Hint: reformulate the unconstrained objective D f (z̃, x)− 〈z̃, y〉 to

D f (z̃, z) + c
(

1−∑k
j=1 z̃j

)
+ d for constants c and d independent of z̃. [8]

(d) Consider the following modification of k-means clustering with uncertainty:

(ẑ, µ̂) = arg min
z∈Rs×k, µ∈Rn×k

{
s

∑
i=1

k

∑
j=1

zij‖xi − µj‖2 s.t. zij ∈ [0, 1] ,
k

∑
j=1

zij = 1, ∀i, j

}
,

for s data points {xi}s
i=1, where every xi ∈ Rn is n-dimensional, centroids

µ ∈ Rn×k and assignments z ∈ Rs×k. What is the difference to traditional
k-means clustering? Formulate an algorithm to computationally solve this
modified k-means clustering problem. [9]
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Solution:

(a) We show the solution for d = 5; other solutions are computed in similar
fashion. We compute the Euclidean distances of the data points with respect to
the initial centroids:(

4
√

153
√

26 17
√

545√
26
√

113 4
√

569
√

605

)
,

leading to the following assignment:

z1 =

(
1 0 0 1 1
0 1 1 0 0

)
.

Hence, we update the centroids to

µ1
1 =

x1 + x4 + x5

3
=

(
1
32
3

)

µ1
2 =

x2 + x3

2
=

(
−7

2
1

)
Second iteration: the (Euclidean) distances between the data points and the
centroids from the first iteration are(

32
3

√
1105
3

√
1234
3

√
1465
3

√
1657
3√

85
2

√
65
2

√
65
2

√
1873
2

√
1249
2

)
,

leading to the following assignment:

z2 =

(
0 0 0 1 1
1 1 1 0 0

)
.

We update the centroids to

µ1
1 =

x4 + x5

2
=

(
1

16

)

µ1
2 =

x1 + x2 + x3

3
=

(
−2

2
3

)
Third iteration: the (Euclidean) distances between the data points and the
centroids from the first iteration are(

16
√

233
√

290
√

145
√

145√
85
3

√
274
3

√
61
3

√
3874
3

√
3130
3

)
,

leading to the assignment:

z3 =

(
0 0 0 1 1
1 1 1 0 0

)
.

We see that z3 = z2, hence µ3 = µ2 and we have converged.

This question is similar to Exercise 1.3 of Coursework 3.
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(b) The minimal rank for the matrix is one, which is why the question marks have
to be replaced with numbers such that the matrix has rank one. This can be
achieved by ensuring that each row is a multiple of the first row. The second
row is the first row multiplied by −3, and the second row is the first row
multiplied by 5. Hence, we set 1 −2 d −7

−3 6 −3d 21
5 −10 5d −35


to complete the matrix such that it has rank one.

This question is similar to Exercise 2.2 of Coursework 5.

(c) First, we verify that the Bregman distance w.r.t. f (z) := ∑k
j=1 zj log(zj) reads

D f (z, x) =
k

∑
j=1

zj log(zj)−
k

∑
j=1

xj log(xj)−
k

∑
j=1

(1 + log(xj))(zj − xj)

=
k

∑
j=1

[
zj log

(
zj

xj

)
+ xj − zj

]
,

which is also known as the Kullback-Leibler divergence. Next, we show that
z = softmax (log(x)y) is a global minimiser of our objective. We do this by
reformulating

D f (z̃, x)− 〈z̃, y〉 =
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j

]
−

k

∑
j=1

z̃jyj

=
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j − yjz̃j

]

=
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j − yjz̃j + z̃j log(zj)− z̃j log(zj)

]

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ xj − z̃j − yjz̃j + z̃j log(zj)− z̃j log(xj)

]

We replace z̃j log(zj) with

z̃j log(zj) = z̃j

(
log(xj exp(yj))− log

(
k

∑
i=1

xi exp(yi)

))

= z̃j log(xj) + z̃jyj − z̃j log

(
k

∑
i=1

xi exp(yi)

)
,
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and, thus, obtain

D f (z̃, x)− 〈z̃, y〉

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ xj − z̃j + z̃j log

(
1

∑k
i=1 xi exp(yi)

)]

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ zj − z̃j + z̃j log

(
1

∑k
i=1 xi exp(yi)

)
+ xj − zj

]

= D f (z̃, z) +
k

∑
j=1

[
z̃j log

(
1

∑k
i=1 xi exp(yi)

)
+ xj − zj

]

= D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
− c +

k

∑
j=1

[
zj − xj

]
︸ ︷︷ ︸

constant, independent of z̃

,

for c := log
(

∑k
i=1 xi exp(yi)

)
independent of z̃. Hence, we have

arg min
z̃∈Rk

{
D f (z̃, x)− 〈z̃, y〉 subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
+ c +

k

∑
j=1

[
zj − xj

]
subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
subject to

z̃ ∈ [0, 1]k , and
k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}
.

Here, the final equality follows from the fact that the constraint ∑k
j=1 z̃j = 1

already ensures 1−∑k
j=1 z̃j = 0. Since f is convex, the Bregman distance is

non-negative, i.e. D f (x, y) ≥ 0 for all x, y ∈ Rk. Hence, the smallest value that
we can attain is D f (x, y) = 0, which we do attain for D f (z̃, z). Since z also
satisfies the constraints, we know that z̃ = z is a global minimiser of the original
optimisation problem.

This question tests the understanding of multiple concepts in the lecture notes and
builds on coursework related to Bregman distances.
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(d) The classical k-means clustering model as introduced in the lecture notes is

(ẑ, µ̂) = arg min
z∈Rs×k, µ∈Rn×k

{
s

∑
i=1

k

∑
j=1

zij‖xi − µj‖2 subject to zij ∈ {0, 1} ,
k

∑
j=1

zij = 1, ∀i, j

}
,

for s data points {xi}s
i=1, where every xi ∈ Rn is n-dimensional, centroids

µ ∈ Rn×k and assignments z ∈ Rs×k. The difference of the new model is the
change of the constraint zij ∈ {0, 1} to zij ∈ [0, 1]; hence, we have

(ẑ, µ̂) = arg min
z∈Rs×k, µ∈Rn×k

{
s

∑
i=1

k

∑
j=1

zij‖xi − µj‖2 subject to zij ∈ [0, 1] ,
k

∑
j=1

zij = 1, ∀i, j

}
.

This part of the question requires knowledge about the definition of k-means clustering
as introduced in Section 3.1.1 in the lecture notes.
Based on Question 3(c), we modify the unconstrained k-means clustering
objective to

Ll(µ, z) =
s

∑
i=1

k

∑
j=1

zij‖xi − µj‖2 + D f (z, zl) ,

for f (z) = ∑s
i=1 ∑k

j=1 zij log(zij) and propose an iterative, alternating
minimisation algorithm of the form

zl+1 = arg min
z∈Rs×k

{
s

∑
i=1

k

∑
j=1

zij‖xi − µl
j‖2 + D f (z, zl) subject to zij ∈ [0, 1] ,

k

∑
j=1

zij = 1, ∀i, j

}
,

µl+1 = arg min
µ∈Rn×k

{
s

∑
i=1

k

∑
j=1

zl+1
ij ‖xi − µj‖2

}
,

where l = 0, 1, 2, . . . denotes the iteration index. Thanks to Question 3(c), we
know that the solution of the first problem simply reads

zl+1
ij =

zl
ij exp

(
−‖xi − µl

j‖2
)

∑k
r=1 zl

ir exp
(
−‖xi − µl

r‖2
) , for all i ∈ {1, . . . , s} and j ∈ {1, . . . , k} ,

while the update for the centroids is unchanged and is given in the lecture
notes as

µl+1
j =

∑s
i=1 zl+1

ij xi

∑s
i=1 zij

, for all j ∈ {1, . . . , k} .

This part of the question requires understanding of k-means clustering as introduced in
Section 3.1.1 in the lecture notes and its numerical implementation, as well as the
ability to transfer knowledge about the solution of Question 3(c) into a new context.

End of Paper.
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