
Main Examination period 2020 – May/June – Semester B
Online Alternative Assessments

MTH793P: Advanced machine learning

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this assessment, you may use books, notes, and the internet. You
may use calculators and computers, but you should show your working for any
calculations you do. You must not seek or obtain help from anyone else.

At the start of your work, please copy out and sign the following declaration:

I declare that my submission is entirely my own, and I have not sought
or obtained help from anyone else.

All work should be handwritten, and should include your student number.

You have 24 hours in which to complete and submit this assessment. When you have
finished your work:

• scan your work, convert it to a single PDF file and upload this using the
upload tool on the QMplus page for the module;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

You are not expected to spend a long time working on this assessment. We expect
you to spend about 3 hours to complete the assessment, plus the time taken to scan
and upload your work. Please try to upload your work well before the end of the
assessment period, in case you experience computer problems. Only one attempt is
allowed – once you have submitted your work, it is final.

Examiners: M. Benning
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The notation log refers to the natural logarithm. The set of all natural numbers (start-
ing from one) is denoted by N. The function rank(L) returns the rank of a matrix
L. All computations should be done by hand where possible, with marks being
awarded for intermediate steps in order to discourage computational aids.

Question 1 [36 marks].

(a) Compute the expected value Ex of a (discrete) Poisson-distributed random
variable X with probability

px := exp(−λ)
λx

x !
, x = 1, 2, . . . , s

for a constant λ > 0. What is the solution for s→ ∞? Hint: Make use of the
identity exp(λ) = ∑∞

x=0
λx

x ! . [6]

(b) For a uniform (and absolutely continuous) random variable X in [0, 1] compute
the expectation of f (X) for

f (x) :=

{
− log(x) x ∈ [0, 1/d]
0 otherwise

,

where d is the maximum of the last digit of your student ID and 1. Make use of
the convention 0 log(0) = 0. [6]

(c) Let X be a random variable with expectation µ and variance σ2. Show that the
variance of aX + b, where a, b ∈ R, is

Varx[ax + b] = a2σ2 .

[6]

(d) Verify that the gradient of the function J(x) := 1
2〈Qx, x〉, where Q ∈ Rn×n is a

(square) matrix, is ∇J(x) = 1
2(Q + Q>)x. What does the gradient simplify to if

Q is also symmetric? [6]

(e) Compute the Bregman distance with respect to the function J(x) = 1
2〈Qx, x〉,

where Q ∈ Rn×n is a (square) matrix. [6]

(f) If Q in Question 1(e) is a symmetric, positive semi-definite matrix, the function
J is guaranteed to be convex for all arguments. What does this imply for the
corresponding Bregman distance? [6]
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Solution:

(a) The expectation for a discrete Poisson-distributed random variable X reads

Ex[x] =
s

∑
x=1

xpx =
s

∑
x=1

x exp(−λ)
λx

x !

= λ exp(−λ)
s

∑
x=1

λx−1

(x− 1) !
= λ exp(−λ)

s−1

∑
x=0

λx

x !
.

Taking the limit s→ ∞ therefore yields

Ex[x] = λ exp(−λ)
∞

∑
x=0

λx

x !

= λ exp(−λ) exp(λ) = λ .

This is a new exercise, which can easily be computed with help of the lecture notes.

(b) For d = 5 we compute

Ex[ f (x)] =
∫ 1

0
f (x) dx = −

∫ 1
5

0
log(x) dx = − [x log x− x]

1
5
0

=
1
5
− 1

5
(log(1)− log(5)) =

1
5
(1 + log(5)) ≈ 0.5218875825 .

This exercise is similar to Exercise 1, Coursework 3

(c) With the definition of the variance we compute

Varx[ax + b] = Ex

[
(ax + b−Ex[ax + b])2

]
= Ex

[
(ax + b− aEx[x] + b)2

]
= Ex

[
(ax− aEx[x])

2
]

= Ex

[
a2 (x−Ex[x])

2
]

= a2Ex

[
(x−Ex[x])

2
]

= a2 Varx[x]

= a2σ2 .

This question is similar to a question in the (yet unpublished) mock exam.

(d) For the function J(x) := 1
2〈Qx, x〉 we observe

J(x) =
1
2

n

∑
i=1

(
n

∑
j=1

qijxj

)
xi ,
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where qij are the entries of Q. Computing the partial derivatives w.r.t. xl
therefore yields

∂

∂xl
J =

1
2

n

∑
j=1

ql jxj +
1
2

n

∑
i=1

qilxi .

In matrix-form we therefore have

∇J(x) =
1
2

Qx +
1
2

Q>x .

If Q is symmetric, the gradient simplifies to

∇J(x) = Qx = Q>x .

This question can be answered based on basic calculus.

(e) For the stated function we compute ∇J(y) = 1
2(Q + Q>)y and therefore

DJ(x, y) =
1
2
〈Qx, x〉 − 1

2
〈Qy, y〉 −

〈
1
2
(Q + Q>)y, x− y

〉
=

1
2

(
〈Qx, x〉 − 〈Qy, y〉 − 〈Qy, x− y〉+ 〈Q>y, x− y〉

)
=

1
2
(〈Qx, x〉 − 〈Qy, y〉 − 〈Qy, x− y〉 − 〈y, Q(x− y)〉)

=
1
2
(〈Qx, x〉 − 〈Qy, y〉 − 〈Qy, x− y〉 − 〈y, Qx〉+ 〈y, Qy〉)

=
1
2
(〈Qx, x〉 − 〈Qy, x− y〉 − 〈y, Qx〉)

=
1
2
(〈Qx, x− y〉 − 〈Qy, x− y〉)

=
1
2
〈Q(x− y), x− y〉

This exercise is similar to Exercise 2, Coursework 3

(f) It implies that the Bregman distance DJ(x, y) is non-negative for all x, y ∈ Rn,
i.e. DJ(x, y) ≥ 0 for all x, y ∈ Rn.

This question can be answered based on the lecture notes content.
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Question 2 [34 marks].

(a) You want to decide whether or not to become a data scientist. You base your
decision on three factors:

• Am I excited about machine learning?

• Does becoming a data scientist involve understanding complicated
mathematics?

• Do companies likely hire data scientists?

Suppose you do not mind if becoming a data scientist involves understanding
complicated mathematics as long as many companies likely hire data scientists.
However, you really would not want to become a data scientist if machine
learning does not excite you.

Model this binary decision process with a perceptron and choose some
appropriate weights to mimic the decision process accurately. [7]

(b) Write down the incidence matrix for the following weighted, undirected graph:

Fender

Gibson
Gretsch

Paiste

Zildjian

E3: 64 E4: 36

E1: 9
E2: 49

E5: 9

E6: 81

Order the columns of the incidence matrix alphabetically according to the
vertex name and the rows according to the edge numbering (E1, E2, E3, ...). [7]

(c) Compute the corresponding graph Laplacian for the incidence matrix in
Question 2(b). [6]
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(d) We want to use the graph from Question 2(b) to determine whether a node in
the graph belongs to the class ”guitars” or the class ”cymbals”. Suppose we are
in a semi-supervised setting, where the node ”Fender” is already labelled
vFender = 1 (class ”guitars”) and the node ”Zildjian” is labelled as vZildjian = 0
(class ”cymbals”). Determine the labels for all remaining nodes, and classify
each node. [8]

(e) Determine manually some parameters w ∈ R2 and b ∈ R of a neural network of
the form

f (x1, x2) = max
(

0, w>
(

x1
x2

)
+ b
)

that is supposed to mimic the logical AND function, i.e.

x1 x2 f (x1, x2)
0 0 0
1 0 0
0 1 0
1 1 1

.

[6]
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Solution:

(a) This binary decision process can for example be modelled with the following
perceptron:

f (x1, x2, x3) =

{
0 5x1 − x2 + 3x3 ≤ 4
1 5x1 − x2 + 3x3 > 4

,

where x1, x2, x3 ∈ {0, 1} represent variables associated to the three factors
mentioned in the problem description. Different states are represented as
follows:

f (x1, x2, x3) x1 x2 x3
1 1 1 1
0 0 1 1
1 1 0 1
0 1 1 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Hence, one would never become a data scientist if one finds machine learning
not exciting. If one finds machine learning exciting but becoming a data
scientist also involves complicated mathematics one will only become a data
scientist if companies likely hire data scientists.

This exercise is similar to Exercise 3 on Coursework 3

(b) The incidence matrix for the displayed graph is

Mw =



E1 0 −3 0 3 0
E2 0 −7 7 0 0
E3 −8 8 0 0 0
E4 −6 0 6 0 0
E5 0 0 −3 0 3
E6 0 0 0 −9 9

Fender Gibson Gretsch Paiste Zildjian


This question is similar to Exercise 2 on Coursework 4.

(c) The corresponding graph Laplacian then reads

Lw = M>w Mw =


Fender 100 −64 −36 0 0
Gibson −64 122 −49 −9 0
Gretsch −36 −49 94 0 −9
Paiste 0 −9 0 90 −81

Zildjian 0 0 −9 −81 90
Fender Gibson Gretsch Paiste Zildjian


This question is similar to Exercise 2 on Coursework 4.
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(d) From the lecture notes we know that the label vector v ∈ R5 can be
decomposed as

v = P>R⊥ ṽ + P>R y ,

where PR denotes the projection of v onto the known indices, and PR⊥ onto the
unknown indices. The known indices are denoted by y, the unknown by ṽ. For

v =


vFender
vGibson
vGretsch
vPaiste

vZildjian


we know the first and the last entry; the first belongs to the class ”guitars” and
therefore takes on the value vFender = 1, whereas the last entry belongs to the
class ”cymbals”, hence vZildjian = 0. Thus, for y =

(
1 0

)> we have

v =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 ṽ +


1 0
0 0
0 0
0 0
0 1


(

1
0

)
.

From the lecture notes we also know that we can estimate ṽ via

ṽ = arg min
v

∥∥∥Mw

(
P>R⊥v + P>R y

)∥∥∥2
,

= −
(

PR⊥LwP>R⊥
)−1 (

PR⊥LwP>R y
)

,

which for our matrices reads 122 −49 −9
−49 94 0
−9 0 90

 ṽ =

64
36
0

 ,

Solving this linear system leads to the (approximate) solution

ṽ ≈

0.8661
0.8345
0.0666

 .

Rounding all values above 1/2 to one and below 1/2 to zero then yields the
classification

v =


vFender
vGibson
vGretsch
vPaiste

vZildjian

 =


1
1
1
0
0

 .

This question is similar to Question 3 of the mock exam.
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(e) A possible choice of weights w and bias b is

w =

(
1
1

)
and b = −1 .

This way we obtain f (0, 0) = max(0,−1) = 0, f (1, 0) = max(0, 0) = 0,
f (0, 1) = max(0, 0) = 0 and f (1, 1) = max(0, 1) = 1. I will accept any weights
and biases as correct answers that yield f (0, 0) = 0, f (1, 0) = 0, f (0, 1) = 0 and
f (1, 1) = 1.

This question is similar to Exercise 1 of Coursework 4.
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Question 3 [30 marks].

(a) Perform two steps of k-means clustering by hand for the six data points x1 = 1,
x2 = 3, x3 = 0, x4 = 15, and x5 = 17. Assume k = 2 clusters and initialise your
variables as

z0 :=
(

1 1 1 1 1
0 0 0 0 0

)>
,

and

µ0 :=
(

d
0

)
,

where d is the eighth digit of your student ID number. For each iteration,
update the variable zl first, and then µl. Here l ∈ {1, 2} denotes the iteration
index. Did the iteration converge? [8]

(b) Complete the following matrix such that it has minimal rank:(
1 −2 d
−3 6 ?

)
.

Here d is the maximum of the seventh digit of your student ID number and 1.
Justify your choice. [6]

(c) Compute by hand an approximation L̂ ∈ R2×3 with rank(L̂) = 1 of the matrix

X := d
(

6 4 4
4 6 −4

)
,

where d is the maximum of the last digit of your student ID and 1, that satisfies
‖L̂− X‖Fro ≤ ‖L− X‖Fro, for all L ∈ R2×3 with rank(L) = 1. [8]

(d) Formulate a projected (or proximal) gradient descent algorithm for a matrix
completion problem of the form

L̂ = arg min
L∈Rs×n

{
1
2
‖PΩL− y‖2

Fro subject to rank(L) ≤ k
}

.

Here PΩ ∈ Rs×n → Rr is a (known) projection operator that projects the known
entries, specified by the index set Ω, of its argument to a vector of length r. The
vector of known entries is denoted by y ∈ Rr and k ∈N is a fixed constant that
determines the rank of L̂. What does the proximal mapping (in the proximal
gradient descent) look like? What is its closed-form solution? [8]

Solution:
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(a) The update formulae for k-means clustering are

zl+1
ik =

{
1 k = arg minj∈{1,2} |xi − µl

j|2

0 otherwise
,

and

µl+1 =
∑5

i=1 zl+1
ik xi

∑5
i=1 zl+1

ik

.

For d = 9 we compute(
|x1 − µ0

1|2 |x2 − µ0
1|2 |x3 − µ0

1|2 |x4 − µ0
1|2 |x5 − µ0

1|2
|x1 − µ0

2|2 |x2 − µ0
2|2 |x3 − µ0

2|2 |x4 − µ0
2|2 |x5 − µ0

2|2
)

=

(
64 36 81 36 64
1 9 0 225 289

)
for the squared differences. Hence, we compute

z1 =

(
0 0 0 1 1
1 1 1 0 0

)
,

and, consequently, also

µ1 =

∑5
i=1 z1

i1xi

∑5
i=1 z1

i1
∑5

i=1 z1
i2xi

∑5
i=1 z1

i2

 =

∑5
i=4 z1

i1xi

∑5
i=4 z1

i1
∑3

i=1 z1
i2xi

∑3
i=1 z1

i2

 =

( 15+17
2

1+3+0
3

)
=

(
16
4
3

)
.

This completes the first iteration. Computing the squared differences for the
second iteration then yields(

|x1 − µ1
1|2 |x2 − µ1

1|2 |x3 − µ1
1|2 |x4 − µ1

1|2 |x5 − µ1
1|2

|x1 − µ1
2|2 |x2 − µ1

2|2 |x3 − µ1
2|2 |x4 − µ1

2|2 |x5 − µ1
2|2
)

=

(
255 169 256 1 1

1
9

25
9

16
9

1681
9

2209
9

)
,

for which we obtain

z2 =

(
0 0 0 1 1
1 1 1 0 0

)
.

Since z2 = z1, µ2 will also equal µ1 and the algorithm has converged.

This question is similar to Exercise 1 on Coursework 5.

(b) The minimal rank for non-zero 2× 3-matrix is one. Completing the matrix for
d = 7 to (

1 −2 7
−3 6 −21

)
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ensures that the entries of the second row are the entries of the first row
multiplied by −3. This way both rows are linearly dependent, leading to a
matrix of rank one.

This question can be answered based on the lecture notes content.

(c) From the lecture notes we know that the best possible rank-one approximation
in terms of the Frobenius norm can be computed by computing the
(incomplete) singular value decomposition of X. Like in a similar coursework
exercise, we compute the eigenvalues of XX> by solving the characteristic
polynomial det(XX> − λI) = 0, i.e.

det(XX> − λI) = det
(

d
(

68− λ 32
32 68− λ

))
= d2(68− λ)2 − d21024

= d2
(

λ2 − 136λ + 3600
)
= 0 ,

whose solutions are λ1 = 100d2 and λ2 = 36d2. Since the singular values are
σi =

√
λi for i = 1, 2, we obtain σ1 = 10d and σ2 = 6d. The best rank one

approximation can be computed by computing X̃ = u1u>1 X, where u1 is the
singular vector that corresponds to σ1. We determine u1 by computing the
kernel of XX> − λ1 I, i.e.

ker(XX> − λ1 I) = ker
(

d
(
−32 32
32 −32

))
=

{
t
(

1
1

)∣∣∣∣ t ∈ R

}
.

Since u1 ∈ ker(XX> − λ1 I) has to have norm one, we easily compute

u1 =
1√
2

(
1
1

)
.

As a consequence, the best rank-one approximation of X in terms of the
Frobenius norm is computed via

X̃ = u1u>1 X =
d
2

(
1
1

) (
1 1

) (6 4 4
4 6 −4

)
= d

(
5 5 0
5 5 0

)
.

This exercise is similar to Exercise 2(1) on Coursework 5.

(d) A proximal or projected gradient descent method for this (non-convex) problem
can be formulated by splitting the objective into two parts

F(L) :=
1
2
‖PΩL− y‖2

Fro and R(L) := χrank(·)≤k(L) ,

where χrank(·)≤k(L) denotes the characteristic function

χrank(·)≤k(L) :=

{
0 rank(L) ≤ k
∞ otherwise

,
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and formulating

Lj+1 = (I + τ∂R)−1
(

Lj − τ∇F(Lj)
)

=
(

I + χrank(·)≤k(L)
)−1 (

Lj − τP>Ω
(

PΩLj − y
))

= arg min
L∈Rs×n

{
1
2

∥∥∥L−
(

Lj − τP>Ω
(

PΩLj − y
))∥∥∥2

Fro
subject to rank(L) ≤ k

}
,

for a step-size parameter 0 < τ < 1, and some initial value L0. Here j denotes
the iteration index. The closed-form-solution of the projection / proximal map
can be deduced from the lecture notes in form of Theorem 2.1. Then each
iteration reads

Y j = Lj − τP>Ω
(

PΩLj − y
)

Compute SVD Y j = UjΣjV>j
Lj+1 = (Uj)k(Uj)

>
k Y j ,

where (Uj)k denotes the first k-columns of Uj.

This is a new exercise.

End of Paper.
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