
Late-Summer Examination period 2022

MTH793P: Advanced Machine Learning

You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your work-
ing for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution
to an exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 4 hours in which to complete and submit this assessment.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case
you experience computer problems. Only one attempt is allowed – once you have
submitted your work, it is final.

Examiners: O. Bobrowski, P. Skraba
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(1) For involved mathematical computations (e.g., inverting a matrix, computing eigen-
vectors, etc.) you are encouraged to use a calculator or a computer, unless stated
otherwise in the problem. You should make it clear where you used a computer and
how.
(2) When asked to perform a certain machine-learning task (e.g., K-means, PCA), you
should present all the steps of execution for the algorithm, and not run the algorithm
on a computer.

Question 1 [25 marks]. Graph clustering
Let G be the following graph:

We assign weights to the edges in the following way: w(ei) = 10− i.

(a) Write down the graph Laplacian L for this weighted graph. Make sure the rows of
the Laplacian have the same ordering as the vertices. [5]

(b) Suppose that we are given that v1 is labelled as ‘0’, and both v2 and v6 as ‘1’. Use
the semi-supervised graph labelling method discussed in class to label all the other
vertices. You are allowed to use a computer to solve a linear system, but should
explain all the steps leading to this system, and how to interpret the output. [10]

(c) Suppose we modify the weights of e5, e8 to be w(e5) = 0.000005 and
w(e8) = 4, 000, 000. Without running the algorithm again, explain what will be
the effect of this change on the results. [5]

(d) Suppose that we repeat part (b), but now with v1, v2, v6 all labelled as ‘1’.
Without running the algorithm again, explain what will be the effect on the
results. [5]
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Solution:

(a) The weight and degree matrices are:

W =


0 3 0 2 7 9
3 0 0 0 6 8
0 0 0 0 0 5
2 0 0 0 0 0
7 6 0 0 0 4
9 8 5 0 4 0

 , D =


21 0 0 0 0 0
0 17 0 0 0 0
0 0 5 0 0 0
0 0 0 2 0 0
0 0 0 0 17 0
0 0 0 0 0 26

 .

Therefore, the Laplacian is:

L = D −W =


21 −3 0 −2 −7 −9
−3 17 0 0 −6 −8
0 0 5 0 0 −5
−2 0 0 2 0 0
−7 −6 0 0 17 −4
−9 −8 −5 0 −4 26

 ,

(b) We first write the projection matrices:

PL =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 PU =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Let y = (0, 1, 1)T be the known label, and let g be the values we assign the unlabelled
vertices. Then g is the solution for

A · g = b,

where

A = PU · L · P T
U =

 5 0 0
0 2 0
0 0 17

 b = −PU · L · P T
L · y = (5, 0, 10)T .

Solving this equation yields,
g = (1, 0, 10/17)T

The labelling vector we conclude will then be

(0, 1, 1, 0, 1, 1)T .

(c) Note that v4’s only neighbor is v1 whose label is ‘0’. Therefore, no matter what the
weight of e8 would be, we will always label it as ‘0’. Similarly, v3’s only neighbor is v6
whose label is ‘1’, and therefore v3 will always be labeled as ‘1’.

(d) Since all given labels are ‘1’ the algorithm aims to label their neighbours the same
way. Therefore, all vertices will be labelled as ’1’.

c© Queen Mary University of London (2022) Continue to next page



MTH793P (Late Summer 2022) Page 4

Question 2 [25 marks]. K-means clustering
Consider the set of data points:

x1 = (1, 1)T , x2 = (2, 3)T , x3 = (−1,−2)T , x4 = (4, 4)T , x5 = (−3,−3)T .

(a) Perform the first two steps of the K-means algorithm for these points, with k = 2
and the initial centroids given by:

µ1 = (0, 3)T , µ2 = (−2,−2)T .

You should run the k-means algorithm by hand, and not use any software. You
may use a calculator if you find it helpful. [15]

(b) Let C1, C2 be the two clusters produced by the K-means algorithm in part (a).
Compute the Dunn-Index (DI) for these clusters, using the single-linkage
inter-cluster distance, and the diameter intra-cluster distance. [10]

Solution:

(a) The results:

assignments centroids
x1 x2 x3 x4 x5 µ1 µ2

Step 1: 1 1 2 1 2 (7
3
, 8
3
) (−2,−2.5)

Step 2: 1 1 2 1 2 (7
3
, 8
3
) (−2,−2.5)

Since the assignments haven’t changed between step 1 and step 2, the algorithm stops.
The output clusters are: C1 = {x1, x2, x4}, and C2 = {x3, x5}. The centroids are
µ1 = (7

3
, 8
3
), µ2 = (−2,−2.5).

(b) For the inter-cluster distance we compute:

‖x1 − x3‖ = 3.6056, ‖x1 − x5‖ = 5.6569,

‖x2 − x3‖ = 5.8310, ‖x2 − x5‖ = 7.8102,

‖x4 − x3‖ = 7.8102, ‖x4 − x5‖ = 9.8995.

Therefore
δ(C1, C2) = 3.6056.

For the intra-cluster distance we compute:

‖x1 − x2‖ = 2.2361, ‖x1 − x4‖ = 4.2426, ‖x2 − x4‖ = 2.2361

‖x3 − x5‖ = 2.2361.

Therefore
∆(C1) = 4.2426, ∆(C2) = 2.2361.

and we conclude that

DI =
3.6065

4.2426
= 0.8499.
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Question 3 [35 marks]. SVD and PCA

In this problem you are not allowed to use a computer, except for part (c).

(a) Consider the matrix:

M =

(
3 4 0 0
5 0 0 0

)
Find the matrices U ,Σ, and V of the SVD: M = UΣV T .
HINT: Use the matrices MMT , MTM . [10]

(b) You are given a set of points {x1, x2, x3, x4, x5} ⊂ R3, where

x1 = (3, 2, 3), x2 = (2, 3,−2), x3 = (−1, 3, 2), x4 = (1,−2, 0), x5 = (0,−1, 2).

We want to find the best fit for a line approximating these points using PCA. We
will break it into a few steps:

(i) Find the empirical mean of the dataset, denoted x̄.

(ii) Centre the data points x1, . . . , x5 using x̄, and stack the resulting vectors as
columns in a matrix called X.

(iii) Using the SVD decomposition of X, find the principal components
(directions) of X.

(iv) Find the projection of X onto its first principal component.

(v) Write down the resulting approximation, denoted x̂1, . . . , x̂5 (don’t forget to
fix the mean).

Note: In this part you are allowed to use a computer to compute
eigenvectors/singular vectors, but do not use any implemented PCA routine. [15]

(c) Recall the definition of the singular value thresholding operator:

X = UΣV T −→ Dτ (X) = USτ (Σ)V T ,

where Sτ is the soft-thresholding function.

Considering the data matrix X from part (c) – what is rank(X)? What is
rank(D4(X)) [10]
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Solution:

(a) Here

M =

(
3 4 0 0
5 0 0 0

)
.

We start by finding MMT :

MMT =

(
25 15
15 25

)
.

The characteristic polynomial is:

det(MMT−λI) = det

(
25− λ 15

15 25− λ

)
= (25−λ)2−225 = λ2−50λ+400 = (λ−40)(λ−10).

The eigenvalues of MMT are therefore λ1 = 40, λ2 = 10.
We saw in class that the singular values in this case are

σ1 =
√
λ1 =

√
40, σ2 =

√
λ2 =

√
10 ⇒ Σ =

(√
40 0 0 0 0

0
√

10 0 0 0

)
.

We find the eigenvectors:

MMT − λ1I =

(
−15 15
15 −15

)
.

The kernel of this matrix is any vector of the form α · (1, 1)T . The unit eigenvector is
therefore u1 =

√
1/2(1, 1)T .

MMT − λ2I =

(
15 15
15 15

)
.

The kernel of this matrix is any vector of the form α · (1,−1)T . The unit eigenvector is
therefore u2 =

√
1/2(1,−1)T . The matrix U consists of u1, u2 found above. Therefore,

U =
√

1/2

(
1 1
1 −1

)
.

To find V we will consider MTM :

MTM =


34 12 0 0
12 16 0 0
0 0 0 0
0 0 0 0


Taking ṽ1 = (2, 1, 0, 0)T we have

(MTM)ṽ1 = (80, 40, 0, 0)T = 40ṽ1,

therefore ṽ1 is an eigenvector for λ1. Nomalising it we get

v1 =
ṽ1
‖ṽ1‖

=
1√
5

(2, 1, 0, 0)T .
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Next, taking ṽ2 = (1,−2, 0, 0)T we have

(MTM)ṽ2 = (10,−20, 0, 0)T = 10ṽ2,

Taking v2 = 1√
5
(1,−2, 0, 0)T we that vT1 v2 = 0. To complete the matrix V we need

eigenvectors for λ = 0. For example we can take

v3 = (0, 0, 1, 0)T , v4 = (0, 0, 0, 1)T .

Therefore, we have

V =


2√
5

1√
5

0 0
1√
5
− 2√

5
0 0

0 0 1 0
0 0 0 1


(b) The best rank 1 approximation for M is:

v1 · vT1 ·M =
1

2

(
1
1

)
·
(
1 1

)
·
(

3 4 0 0
5 0 0 0

)
=

(
4 2 0 0
4 2 0 0

)
.

(c) The empirical mean is:
x̄ = (1, 1, 1)T .

The data matrix is therefore

X =

2 1 −2 0 −1
1 2 2 −3 −2
2 −3 1 −1 1


The matrix U in the SVD of X is

U =

0.4019 0.0455 −0.9146
0.8250 0.4155 0.3832
0.3974 −0.9085 0.1294


Therefore, the principal components are

u1 = (0.4019, 0.8250, 0.3974)T ,

u2 = (0.0455, 0.4155,−0.9085)T ,

u3 = (−0.9145, 0.3832, 0.1294)T .

The projection on the first PC is given by

X̂ = u1u
T
1X =

0.9739 0.3454 0.4998 −1.1543 −0.6648
1.9993 0.7091 1.0259 −2.3696 −1.3648
0.9631 0.3416 0.4942 −1.1415 −0.6575


The resulting approximations are therefore

x̂1 = (0.9739, 1.9993, 0.9631)T + (1, 1, 1)T = (1.9739, 2.9993, 1.9631)T

x̂2 = (0.3454, 0.7091, 0.3416)T + (1, 1, 1)T = (1.3454, 1.7091, 1.3416)T

x̂3 = (0.4998, 1.0259, 0.4942)T + (1, 1, 1)T = (1.4998, 2.0259, 1.4942)T

x̂4 = (−1.1543,−2.3696,−1.1415)T + (1, 1, 1)T = (−0.1543,−1.3696,−0.1415)T

x̂5 = (−0.6648,−1.3648,−0.6575)T + (1, 1, 1)T = (0.3352,−0.3648, 0.3425)T .

c© Queen Mary University of London (2022) Continue to next page



MTH793P (Late Summer 2022) Page 8

Question 4 [15 marks]. Robust PCA & Matrix completion

(a) Given a matrix

M =

 2 1 4 3
4 21 8 6
−2 −1 −4 13


find the decomposition M = L+ E where E is a sparse matrix (with at most 3
nonzero entries), and L is a low-rank matrix (lowest rank possible). [10]

(b) Suppose you are given the following matrix with missing entries:

M =

1 ? ? ?
0 ? 4 0
0 ? ? 1


Can the above matrix be completed to be rank 2? Explain your answer. [5]

Solution:

(a) We can write

M =

 2 1 4 3
4 21 8 6
−2 −1 −4 13

 =

 2 1 4 3
4 2 8 6
−2 −1 −4 −3

+

0 0 0 0
0 19 0 0
0 0 0 16

 ,

where

L =

 2 1 4 3
4 2 8 6
−2 −1 −4 −3


is rank-1 matrix, and

E =

0 0 0 0
0 19 0 0
0 0 0 16

 ,

is indeed sparse.

(b) If the matrix is rank 2 (or less), then there exists a linear combination of the rows
of the form: aR1 + bR2 + cR3 = 0. For the first element we have: a · 1 + b · 0 + c · 0 = 0,
therefore a = 0. For the last element we have b · 0 + c · 1 = 0, therefore c = 0. Finally,
taking the third element we have b · 4 = 0, so also b = 0. In other words, the three rows
are necessarily independent. Therefore we cannot complete the matrix to be rank 2.
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End of Paper.
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