
Late-Summer Examination period 2021

MTH793P: Advanced Machine Learning

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your working
for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution to an
exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

You have 24 hours to complete and submit this assessment. When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

You are expected to spend about 2 hours to complete the assessment, plus the time
taken to scan and upload your work. Please try to upload your work well before the
end of the submission window, in case you experience computer problems. Only one
attempt is allowed – once you have submitted your work, it is final.

Examiners: M. Benning
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The notation log refers to the natural logarithm. The determinant of a matrix is
denoted by det. The set of real numbers is denoted by R. All computations should
be done by hand where possible, with marks being awarded for intermediate steps
in order to discourage computational aids.

Question 1 [38 marks].

(a) Rewrite the function f (x) = 3x2−2x+4
1+dx+2x2 to g(a) + εh(a, b), where the argument x is

a dual number of the form x = a + εb with ε2 = 0, and specify both g and h. The
number d is one added to the last digit of your student ID number. [8]

(b) Compute the derivative f ′(a) of f as defined in Question 1(a) at argument a by
making use of your result of Question 1(a). [6]

(c) Consider the function f (X) = log(det(X)), acting on an invertible matrix
X ∈ R2×2. Compute the partial derivatives with the help of dual number
calculus, assuming each entry xij of X is a dual number of the form aij + εbij
with ε2 = 1, for i, j ∈ {1, 2}. Subsequently, show that the entire gradient equals
(X>)−1. [8]

(d) Verify that the subdifferential ∂‖ · ‖ of the (non-squared!) Euclidean norm

f (x) := ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n for any x ∈ Rn is characterised via

∂‖x‖ =
{{

x
‖x‖

}
x 6= 0

{p ∈ Rn | ‖p‖ ≤ 1} x = 0
.

[8]

(e) Compute the generalised Bregman distance Dp
f (x, y) with respect to the

function f (x) = ‖x‖ for a specific subgradient p ∈ ∂ f (y). Make sure to
characterise all different cases. [8]
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Solution:

(a) We compute

f (a + εb) =
3(a + εb)2 − 2(a + εb) + 4
1 + d(a + εb) + 2(a + εb)2

=
3a2 − 2a + 4 + εb(6a− 2)
1 + da + 2a2 + εb(d + 4a)

=
u + ε v
w + ε z

,

for u = 3a2 − 2a + 4, v = b(6a− 2), w = 1 + da + 2a2 and z = b(d + 4a). We
further compute

f (a + εb) =
u + ε v
w + ε z

=
(u + ε v)(w− ε z)
(w + ε z)(w− ε z)

=
uw + ε(vw− uz)

w2

=
u
w
+ ε

vw− uz
w2

=
3a2 − 2a + 4
1 + da + 2a2 + ε

b(6a− 2)(1 + da + 2a2)− (3a2 − 2a + 4)b(d + 4a)
(1 + da + 2a2)2

=
3a2 − 2a + 4
1 + da + 2a2 + ε b

(3a2 − 4)d + 4a2 − 10a− 2
(1 + da + 2a2)2

= g(a) + εh(a, b) ,

for g(a) = (3a2 − 2a + 4)/(1 + da + 2a2) and
h(a, b) = b((3a2 − 4)d + 4a2 − 10a− 2)/(1 + da + 2a2)2.

This exercise is similar to Exercise 1 on Coursework 10.

(b) From the lecture notes we know that h(a, 1) = f ′(a). Hence, the derivative of f
w.r.t. the argument a is

f ′(a) = h(a, 1) =
(3a2 − 4)d + 4a2 − 10a− 2

(1 + da + 2a2)2 .

This exercise is similar to a Exercise 1 on Coursework 10.
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(c) Similar to the previous exercise we conclude

f (X) = f (A + εB) = log(det(A + εB))
= log ((a11 + εb11)(a22 + εb22)− (a12 + εb12)(a21 + εb21))

= log (a11a22 − a12a21 + ε (a11b22 + b11a22 − a12b21 − b12a21))

= log

det(A) + ε

〈
a22
−a12
−a21
a11

 ,


b11
b21
b12
b22


〉

= log(det(A)) + ε

〈
a22
−a12
−a21
a11

 ,


b11
b21
b12
b22


〉

det(A)
.

If we specify B =

(
1 0
0 1

)
we can compute the first partial derivative by

evaluating f , which reads a22/ det(A). Computing all partial derivatives and
combining them in compact matrix-notation yields

1
a11a22 − a12a21

(
a22 −a21
−a12 a22

)
= (A>)−1 .

This exercise is similar to a Exercise 2 in Coursework 10.

(d) The definition of the subdifferential for the Euclidean norm ‖ · · · ‖ reads

∂‖x‖ = {p ∈ Rn | ‖y‖ ≥ ‖x‖+ 〈p, y− x〉 , ∀y ∈ Rn} .

We characterise this subdifferential by case analysis.
Case 1: suppose x 6= 0, then ‖x‖ is differentiable, with partial derivative xl/‖x‖
for l ∈ {1, . . . , n}. We know from the lecture notes that the subdifferential of a
differentiable function only contains the gradient. Hence, we have
∂‖x‖ = {x/‖x‖}. Case 2: suppose x = 0, then we have

∂‖0‖ = {p ∈ Rn | ‖y‖ ≥ 〈p, y〉 , ∀y ∈ Rn} .

The inequality 〈p, y〉 ≤ ‖y‖ is satisfied for every p with ‖p‖ ≤ 1 and all y,
which can be seen from the Cauchy-Schwartz inequality
〈p, y〉 ≤ ‖p‖‖y‖ = ‖y‖. For p with ‖p‖ > 1 we can always choose a y = p/‖p‖
for which we observe 〈p, y〉 = ‖p‖ > 1 = ‖y‖, so that the inequality is not
satisfied for all y. Hence, the subdifferential reads

∂‖0‖ = {p ∈ Rn | ‖p‖ ≤ 1} .

Combining both cases yields

∂‖x‖ =
{{

x
‖x‖

}
x 6= 0

{p ∈ Rn | ‖p‖ ≤ 1} x = 0
.

This exercise is similar to Exercise 1.3 on Coursework 5.
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(e) The generalised Bregman distance with respect to the function f (x) = ‖x‖
reads

Dp
f (x, y) = ‖x‖ − ‖y‖ − 〈p, x− y〉 ,

for p ∈ ∂‖y‖. From the previous exercise we know

∂‖y‖ =
{{

y
‖y‖

}
y 6= 0

{p | ‖p‖ ≤ 1} y = 0
.

Hence, for y 6= 0 we have p = y/‖y‖ and therefore observe

D
y
‖y‖
f (x, y) = ‖x‖ − ‖y‖ −

〈
y
‖y‖ , x− y

〉
= ‖x‖ − 〈x, y〉

‖y‖ =
‖x‖‖y‖ − 〈x, y〉

‖y‖ .

For y = 0 we have ∂‖0‖ = {p | ‖p‖ ≤ 1} and therefore conclude

Dp
f (x, 0) = ‖x‖ − 〈p, x〉 .

Combining both cases yields

Dp
f (x, y) =

{ ‖x‖‖y‖−〈x,y〉
‖y‖ y 6= 0

‖x‖ − 〈p, x〉 y = 0
.

This exercise is similar to Exercise 2 on Coursework 10.

c© Queen Mary University of London (2021) Continue to next page



MTH793P (Late Summer 2021) Page 6

Question 2 [31 marks].

(a) Determine parameters W ∈ R2×2, w ∈ R2, b ∈ R2 and c ∈ R of a neural
network of the form

f (x1, x2) = w>max
(

0, W>
(

x1
x2

)
+ b
)
+ c

that is the logical XNOR-function, i.e.

x1 x2 f (x1, x2)
0 0 1
1 0 0
0 1 0
1 1 1

.

[8]

(b) Write down the incidence matrix for the following weighted, undirected graph:

McLaren

Ferrari
Aston Martin

Ducati

Yamaha

E3: 64 E4: 36

E1: 16
E2: 49

E5: 9

E6: 81

Use the definition of an incidence matrix from the lecture notes and order the
columns of the incidence matrix alphabetically according to the vertex name
and the rows according to the edge numbering (E1, E2, E3, ...). [7]

(c) Compute the corresponding graph Laplacian for the incidence matrix in
Question 2(b). [8]
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(d) We want to use the graph from Question 2(b) to determine whether a node in
the graph belongs to the class ”cars” or the class ”motorbikes”. Suppose we are
in a semi-supervised setting, where the node ”McLaren” is already labelled
vMcLaren = 1 (class ”cars”) and the node ”Yamaha” is labelled as vYamaha = 0
(class ”motorbikes”). Determine the remaining labels with the same procedure
as described in the lecture notes and classify each node. [8]

Solution:

(a) A possible choice of weights W, w and biases b and c is

W =

(
1 1
1 1

)
w =

(
−1
2

)
b =

(
0
−1

)
and c = 1 .

This way we obtain f (0, 0) = 1, f (1, 0) = 0, f (0, 1) = 0 and f (1, 1) = 1. I will
accept any weights and biases as correct answers that yield f (0, 0) = 0,
f (1, 0) = 0, f (0, 1) = 0 and f (1, 1) = 1.

This question is similar to Exercise 3 on Coursework 10.

(b) The incidence matrix for the displayed graph is

Mw =



E1 0 −4 4 0 0
E2 −7 0 7 0 0
E3 0 0 −8 8 0
E4 −6 0 0 6 0
E5 −3 0 0 0 3
E6 0 −9 0 0 9

Aston Martin Ducati Ferrari McLaren Yamaha


This question is similar to Exercise 1.1 of Coursework 1.

(c) The corresponding graph Laplacian then reads

Lw = M>w Mw =


A. Martin 94 0 −49 −36 −9

Ducati 0 97 −16 0 −81
Ferrari −49 −16 129 −64 0

McLaren −36 0 −64 100 0
Yamaha −9 −81 0 0 90

A. Martin Ducati Ferrari McLaren Yamaha


This question is similar to Exercise 1.2 of Coursework 1.
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(d) From the lecture notes we know that the label vector v ∈ R5 can be
decomposed as

v = P>R⊥ ṽ + P>R y ,

where PR denotes the projection of v onto the known indices, and PR⊥ onto the
unknown indices. The known indices are denoted by y, the unknown by ṽ. For

v =


vAston Martin

vDucati
vFerrari

vMcLaren
vYamaha


we know the fourth and fifth entry; the fourth belongs to the class ”cars” and
therefore takes on the value vMcLaren = 1, whereas the fifth entry belongs to the
class ”motorbikes”, hence vYamaha = 0. Thus, for y =

(
1 0

)> we have

v =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 ṽ +


0 0
0 0
0 0
1 0
0 1


(

1
0

)
.

From the lecture notes we also know that we can estimate ṽ via

ṽ = arg min
v

∥∥∥Mw

(
P>R⊥v + P>R y

)∥∥∥2
,

= −
(

PR⊥LwP>R⊥
)−1 (

PR⊥LwP>R y
)

,

which for our matrices reads−94 0 −49
0 −97 16

49 16 −129

 ṽ =

−36
0
−64

 ,

Solving this linear system leads to the (approximate) solution

ṽ ≈

0.8109
0.1354
0.8209

 .

Rounding all values above 1/2 to one and below 1/2 to zero then yields the
classification

v =


vAston Martin

vDucati
vFerrari

vMcLaren
vYamaha

 =


1
0
1
1
0

 .

This question is similar to Question 1.3 of Coursework 1.
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Question 3 [31 marks].

(a) Perform k-means clustering by hand for the five data points x1 =

(
−3
7

)
,

x2 =

(
0
1

)
, x3 =

(
1
−1

)
, x4 =

(
−5
6

)
, and x5 =

(
−4
5

)
. Assume k = 2 clusters

and initialise your centroids as

µ0
1 :=

(
0
d

)
and µ0

2 :=
(

d
0

)
,

where d is one added to the eighth digit of your student ID number. For each
iteration, update the assignments first, and then the centroids. Perform as many
iterations as are required for the k-means clustering algorithm to converge. [8]

(b) Complete the following matrix such that it has minimal rank:

X =

d ? 1 7
? 6 −3 ?
? −12 ? 42

 .

Here d is the maximum of the seventh digit of your student ID number and 1.
Depending on the rank, find a representation UV> = X with suitable matrices
U and V. [6]

(c) Show that for vectors x, y ∈ Rk and a function g : Rk → Rk the vector z ∈ Rk

defined as

zi =
xi exp (−g(yi))

∑k
j=1 xj exp

(
−g(yj)

) = softmax (− log(x)g(y))i ,

for all i ∈ {1, . . . , k}, is the solution of the optimisation problem

z = arg min
z̃∈Rk

{
D f (z̃, x) + 〈z̃, g(y)〉 subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}
,

where D f denotes the Bregman distance with respect to the convex function
f (z) := ∑k

j=1 zj log(zj).
Hint: reformulate the unconstrained objective D f (z̃, x) + 〈z̃, g(y)〉 to

D f (z̃, z) + c
(

1−∑k
j=1 z̃j

)
+ d for constants c and d independent of z̃. [8]

(d) Design a (Bregman) proximal gradient descent algorithm for the solution of the
convex optimisation problem

x̂ = arg min
x∈Rk

{
h(x) subject to x ∈ [0, 1]k , and

k

∑
j=1

xj = 1

}
.

Here h : Rk → R is a convex and continuously differentiable function. Hint:
make use of Question 3(c). [9]
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Solution:

(a) We show the solution for d = 3; other solutions, however, lead to the same
results in terms of assignments and centroids. We compute the Euclidean
distances of the data points with respect to the initial centroids:(

5 2
√

17
√

34
√

20√
85
√

10
√

5 10
√

74

)
,

leading to the following assignment:

z1 =

(
1 1 0 1 1
0 0 1 0 0

)
.

Hence, we update the centroids to

µ1
1 =

x1 + x2 + x4 + x5

4
=

(
−3
19
4

)

µ1
2 = x3 =

(
1
−1

)
Second iteration: the (Euclidean) distances between the data points and the
centroids from the first iteration are(

9
4

√
369
4

√
785
4

√
89
4

√
17
4√

80
√

5 0
√

85
√

61

)
,

leading to the following assignment:

z2 =

(
1 0 0 1 1
0 1 1 0 0

)
.

We update the centroids to

µ1
1 =

x1 ++x4 + x5

3
=

(
−4
6

)

µ1
2 =

x2 + x3

2
=

(1
2
0

)
Third iteration: the (Euclidean) distances between the data points and the
centroids from the first iteration are( √

2
√

41
√

74 1 1√
245
2

√
5

2

√
5

2

√
265
2

√
181
2

)
,

leading to the assignment:

z3 =

(
1 0 0 1 1
0 1 1 0 0

)
.

We see that z3 = z2, hence µ3 = µ2 and we have converged.

This question is similar to Exercise 1.3 of Coursework 3.
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(b) The minimal rank for the matrix is one, which is why the question marks have
to be replaced with numbers such that the matrix has rank one. This can be
achieved by ensuring that each row is a multiple of the first row. The second
row is the first row multiplied by −3, and the second row is the first row
multiplied by 6. Hence, we set

X =

 d −2 1 7
−3d 6 −3 −21
6d −12 6 42

 .

to complete the matrix such that it has rank one. Since the matrix has rank one,
it can be decomposed into two vectors U and V via X = UV>, where U and V
are of the form

U =

 1
−3
6

 and V =


d
−2
1
7

 .

This question is similar to Exercise 2.2 of Coursework 5.

(c) First, we verify that the Bregman distance w.r.t. f (z) := ∑k
j=1 zj log(zj) reads

D f (z, x) =
k

∑
j=1

zj log(zj)−
k

∑
j=1

xj log(xj)−
k

∑
j=1

(1 + log(xj))(zj − xj)

=
k

∑
j=1

[
zj log

(
zj

xj

)
+ xj − zj

]
,

which is also known as the Kullback-Leibler divergence. Next, we show that
z = softmax (− log(x) f (y)) is a global minimiser of our objective. We do this by
reformulating

D f (z̃, x) + 〈z̃, g(y)〉 =
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j

]
+

k

∑
j=1

z̃jg(y)j

=
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j + g(y)jz̃j

]

=
k

∑
j=1

[
z̃j log

(
z̃j

xj

)
+ xj − z̃j + g(y)jz̃j + z̃j log(zj)− z̃j log(zj)

]

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ xj − z̃j + g(y)jz̃j + z̃j log(zj)− z̃j log(xj)

]
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We replace z̃j log(zj) with

z̃j log(zj) = z̃j

(
log(xj exp(−g(y)j))− log

(
k

∑
i=1

xi exp(−g(y)i)

))

= z̃j log(xj)− z̃jg(y)j − z̃j log

(
k

∑
i=1

xi exp(−g(y)i)

)
,

and, thus, obtain

D f (z̃, x) + 〈z̃, g(y)〉

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ xj − z̃j + z̃j log

(
1

∑k
i=1 xi exp(−g(y)i)

)]

=
k

∑
j=1

[
z̃j log

(
z̃j

zj

)
+ zj − z̃j + z̃j log

(
1

∑k
i=1 xi exp(−g(y)i)

)
+ xj − zj

]

= D f (z̃, z) +
k

∑
j=1

[
z̃j log

(
1

∑k
i=1 xi exp(−g(y)i)

)
+ xj − zj

]

= D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
− c +

k

∑
j=1

[
zj − xj

]
︸ ︷︷ ︸

constant, independent of z̃

,

for c := log
(

∑k
i=1 xi exp(−g(y)i)

)
independent of z̃. Hence, we have

arg min
z̃∈Rk

{
D f (z̃, x) + 〈z̃, g(y)〉 subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
+ c +

k

∑
j=1

[
zj − xj

]
subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) + c

(
1−

k

∑
j=1

z̃j

)
subject to

z̃ ∈ [0, 1]k , and
k

∑
j=1

z̃j = 1

}

= arg min
z̃∈Rk

{
D f (z̃, z) subject to z̃ ∈ [0, 1]k , and

k

∑
j=1

z̃j = 1

}
.

Here, the final equality follows from the fact that the constraint ∑k
j=1 z̃j = 1

already ensures 1−∑k
j=1 z̃j = 0. Since f is convex, the Bregman distance is
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non-negative, i.e. D f (x, y) ≥ 0 for all x, y ∈ Rk. Hence, the smallest value that
we can attain is D f (x, y) = 0, which we do attain for D f (z̃, z). Since z also
satisfies the constraints, we know that z̃ = z is a global minimiser of the original
optimisation problem.

This question tests the understanding of multiple concepts in the lecture notes and
builds on coursework related to Bregman distances.

(d) Similar to proximal gradient descent as described in the lecture notes, we can
convert the optimisation problem into an iterative procedure that approximates
the original problem via

xk+1 = arg min
x∈Rk

{
h(x) + Dg(x, xk) subject to x ∈ [0, 1]k , and

k

∑
j=1

xj = 1

}
. (1)

Usually, in the lecture notes we always chose g(x) = 1
2τ‖x‖2 − h(x). However,

in order to make use of Question 3(c) we chose g(x) = 1
τ f (x)− h(x) for

f (x) = ∑k
j=1
(
xj log(xj)

)
instead. This transforms (1) into

xk+1 = arg min
x∈Rk

{
D f (x, xk) + 〈x, τ∇h(xk)〉 subject to x ∈ [0, 1]k , and

k

∑
j=1

xj = 1

}
,

which is the same optimisation problem as in Question 3(c). Hence, its closed
form solution reads

xk+1
i =

xk
i exp

(
−τ(∇h(xk))i

)
∑k

j=1 xk
j exp

(
−τ(∇h(xk))j

) ,

for all i ∈ {1, . . . , k}.
This part of the question requires understanding of proximal gradient descent as
introduced in Section 2.7.3 in the lecture notes, as well as the ability to transfer
knowledge about the solution of Question 3(c) into a new context.

End of Paper.
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