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Question 1 [20 marks].

You are given the three data points coloured in blue in Figure 1. You are tasked to
add two points, the red points in Figure 1, by interpolation. Considering the problem
as a semi-supervised prediction task, complete the vector y = (1, ?, 3, ?, 2) which
represents the y-coordinates of blue (known) and red (unknown) points.
In particular:

(a) By ordering nodes from left to right, write down the incidence matrix M, and
using the incidence matrix write down the Laplacian matrix L. [5]

(b) We know that the Laplacian matrix can be expressed as L = D − A where D is
a diagonal matrix whose elements are the degree of each node (i.e., data point)
and A is the adjacency matrix. Write down the expressions for these two
matrices and verify that L = D − A. In doing so, keep the order of nodes as
before: from left to right. [5]

(c) We know that this problem leads to a normal equation of the form

P⊤
I1/I2

LPI1/I2ŵ = −P⊤
I1/I2

LPI2v

where v is the vector of known y-values. Write down the expressions for PI2
and PI1/I2 . [5]

(d) Find ŵ by solving the normal equation. Show all the steps and do not just
infer/read the values from the figure [5]

Figure 1: Known points are shown in blue. The red points describe new points we
need to add by interpolation.
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Solution:

(a) This is a variation of a problem discussed in the coursework. The incidence matrix M
reads

M =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 (1)

The Laplacian matrix L is defined as L = M⊤M hence

L =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1



−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


(2)

(b) This is a variation of a problem discussed in the coursework. The matrix D is equal to
D = diag(1, 2, 2, 2, 1). The adjacency matrix is instead

A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 (3)

hence D − A is indeed equal to the Laplacian.

(c) This is a variation of a problem discussed in the coursework. PI2 is a 5 × 3 matrix
equal to

PI2 =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 (4)

as it selects the known values of y which are the data points with ids equal to
{1, 3, 5}. PI1/I2 is a 5 × 2 matrix equal to

PI1/I2 =


0 0
1 0
0 0
0 1
0 0

 (5)

since the unknown values of y are correspondent to the data points with ids
equal to {2, 4}. Finally we have that v = (1, 3, 2)⊤
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(d) This is a variation of a problem discussed in the coursework. The normal equation
reads (

2 0
0 2

)
ŵ =

(
4
5

)
(6)

which implies ŵ =
(
2, 5

2

)
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Question 2 [25 marks].

Consider the five data points plotted in Figure 2. Assume that they are ordered
clockwise such that p1 = (1, 1)⊤, p2 = (2, 1)⊤, p3 = (−1,−1)⊤, p4 = (−2,−1)⊤,
p5 = (−1, 1)⊤.

(a) Write the pairwise distance matrix d whose elements dij describe the Euclidian
distance between point pi and pj . [10]

(b) Starting from the distance matrix d let us build a graph G such that:

• data points are connected only if dij ⩽ 2,

• the weight of each pair of connected nodes is defined as wij = d−1
ij ,

draw the graph, write down the adjacency matrix A, the diagonal matrix D,
and the Laplacian L of the correspondent graph. [5]

(c) just by looking at the Laplacian matrix what can we say about i) the value of the
its second smallest eigenvalue λ2, ii) the graph G. [5]

(d) Consider a connected graph G(N, E) characterised by the adjacency matrix
A ∈ RN×N, the diagonal degree matrix D ∈ RN×N and the Laplacian matrix
L ∈ RN×N. Consider a vector p ∈ RN×1 that satisfies the following equation
p = AD−1p. Prove that p = cD1, where c is a constant and 1 ∈ RN×1 is a
vector whose components are all equal to one. Hint: Use the properties of the
Laplacian matrix. [5]

Figure 2: Data points
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Solution:

(a) This is a variation of a problem discussed in the coursework. The pairwise distance
matrix reads as

d =


0 1 2

√
2

√
13 2

1 0
√

13 2
√

5 3
2
√

2
√

13 0 1 2√
13 2

√
5 1 0

√
5

2 3 2
√

5 2

 (7)

indeed for example the element d1,3 is the distance between point p1 = (1, 1)⊤

and p3 = (−1,−1)⊤ which is equal to

d1,3 = ∥p1 − p3∥ =
√
(1 + 1)2 + (1 + 1)2 =

√
8 = 2

√
2 (8)

analogously d2,3 is the distance between point p2 = (2, 1)⊤ and p3 = (−1,−1)⊤

which is equal to

d2,3 = ∥p2 − p3∥ =
√
(2 + 1)2 + (1 + 1)2 =

√
13 (9)

(b) This is a variation of a problem discussed in the coursework. The graph is a line
network that, by keeping the position of the nodes according their 2D
coordinates, is shown in Figure 3 , The adjacency matrix reads

A =


0 1 0 0 1

2
1 0 0 0 0
0 0 0 1 1

2
0 0 1 0 0
1
2 0 1

2 0 0

 (10)

The matrix D instead is D = diag
(3

2 , 1, 3
2 , 1, 1

)
. Finally the Laplacian matrix

reads

L = D − A =


3
2 −1 0 0 −1

2
−1 1 0 0 0
0 0 3

2 −1 −1
2

0 0 −1 1 0
−1

2 0 −1
2 0 1

 (11)

(c) We have discussed this point in several lectures. The Laplacian matrix is not block
diagonal, hence we know that the graph is not disconnected and λ2 > 0.
Furthermore, this does not depend on the choice of ids for the nodes. Since, the
graph is connected, the kernel of the Laplacian matrix contains only the span of
the constant vector.

(d) We did not discuss problems like this one in the coursework. However, we discussed at
length the properties of the Laplacian matrix with examples similar to this problem.We
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can write p = AD−1p as:

p = AD−1p (12)
p − AD−1p = 0 (13)
(1 − AD−1)p = 0 (14)
(D − A)D−1p = 0 (15)

LD−1p = 0 (16)

from the last expression we can see that D−1p is an eigenvector of the Laplacian
correspondent to eigenvalue zero. Since the graph is connected, the kernel of
the Laplacian has size one and is constituted by the span of 1. Hence, we can
write D−1p = c1 . Multiplying on the left both sides of last expression for D we
prove that p = cD1

Figure 3: Plot of the graph G
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Question 3 [35 marks].

Consider the following six data points: p1 = (1, 1)⊤, p2 = (2, 2)⊤, p3 = (1,−1)⊤,
p4 = (−1,−1)⊤, p5 = (−2,−2)⊤, p6 = (−1, 1)⊤.

(a) Write down the correspondent X ∈ R2×5 matrix and show that the data is
already centred. [5]

(b) Find the principal components of X. [10]

(c) Compute the projections y1, . . . , y6 ∈ R1 of p1, . . . , p6 ∈ R2 on the first principal
component. [5]

(d) Compute the reconstructions of p1, . . . , p6 using the first principal components,
denoted p̂1, . . . , p̂6 ∈ R2. [5]

(e) In a 2D axis system, plot the following:

• The original points x1, . . . , x6,

• The reconstructed points x̂1, . . . , x̂6 ∈ R2,

• The principal components (directions).

[5]

(f) Consider the following matrix:

M =

3 6 1 9
1 2 1

3 10 + d
2 14 + d 2

3 6


where d is the last digit of your student ID number. Find the decomposition
M = L + E where E is a sparse matrix (with at most 3 nonzero entries), and L is
a low-rank matrix (lowest rank possible). [5]
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Solution:

(a) This is a variation of a problem discussed in the coursework. The data matrix X reads

X =

(
1 2 1 −1 −2 −1
1 2 −1 −1 −2 1

)
(17)

(b) This is a variation of a problem discussed in the coursework. It is easy to see that
x̄ = 1

6 ∑j X1j = 0 as well as ȳ = 1
6 ∑j X2j = 0 hence the data points are centred.

(c) This is a variation of a problem discussed in the coursework. In order to find the
principal components we need to consider the singular value decomposition of
the matrix X that is X = UΣV⊤. To answer the question we can just compute
the matrix U which is correspondent to the eigenvectors of the matrix XX⊤. The
matrix is

XX⊤ =

(
1 2 1 −1 −2 −1
1 2 −1 −1 −2 1

)


1 1
2 2
1 −1
−1 −1
−2 −2
−1 1

 =

(
12 8
8 12

)
(18)

The eigenvalues of the matrix are σ2
1 = 20 and σ2

2 = 4. The correspondent

eigenvectors are u1 =
(

1√
2
, 1√

2

)⊤
and u2 =

(
− 1√

2
, 1√

2

)⊤
. Hence, the matrix U

is

U =

( 1√
2

− 1√
2

1√
2

1√
2

)
(19)

The principal components are the two vectors u1 and u2.

(d) This is a variation of a problem discussed in the coursework. The projections can be
easily obtained computing

Y = u⊤
1 X =

(√
2, 2

√
2, 0,−

√
2,−2

√
2, 0
)

(20)

(e) This is a variation of a problem discussed in the coursework. The reconstruction of
the points using the first principal component p̂1, . . . , p̂6 is

X̂ = u1Y =

(
1 2 0 −1 −2 0
1 2 0 −1 −2 0

)
(21)

In Figure 4 we show in blue the original points, in red the reconstructed points
along the first principal component

© Queen Mary University of London (2023) Continue to next page



MTH793P (2023) Page 10

(f) This is a variation of a problem discussed in the coursework. The complexity of the
problem does not change as function of d.The matrix M can be written as:

M = L + E =

3 6 1 9
1 2 1

3 3
2 4 2

3 6

+

0 0 0 0
0 0 0 7 + d
0 10 + d 0 0

 (22)

where indeed the first matrix has rank 1 (as the second row can be obtained by
multiplying the first by 1/3 and the third row by multiplying the first by 2/3).

Figure 4: Original points in blue, reconstructed points in red and principal compo-
nents shown in light grey
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Question 4 [20 marks].

(a) Compute the nuclear norm and the rank of the matrix:

M =

(
1 2 1
1 2 0

)
[10]

(b) Consider a matrix M, show that ∥M∥2
F = ∑r

i=1 σ2
i where the σi are the singular

values. [5]

(c) Consider a matrix X ∈ Rm×n and its singular value decomposition X = UΣV⊤.
Prove that cU⊤XV1 = (cσ1, . . . , cσr)⊤ where 1 ∈ Rn×1 is a constant vector with
all components equal to one, and c ∈ R. [5]
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Solution:

(a) We have discussed about nuclear norms and matrix rank in several lectures. The rank
is the number of non-zero singular values. The nuclear norm is the sum of the
singular values. Hence, the solution implies computing the singular values of
the matrix. To this end, it is convenient to consider MM⊤ (which is a 2 × 2
matrix):

MM⊤ =

(
6 5
5 5

)
from which we can obtain the characteristic equation that leads us to
σ2

1 = 11+
√

101
2 and σ2

2 = 11−
√

101
2 . Hence, the rank of the matrix is two, and the

nuclear norm reads:

∥M∥∗ =
r

∑
i=1

σi =

√
11 +

√
101

2
+

√
11 −

√
101

2
(23)

(b) We did not discuss problems like this one in the coursework. However, we discussed at
length the properties of the Frobenius norm. The Frobenius norm of a matrix can be
written as

∥M∥2
F = Trace(MM⊤) (24)

considering now the SVD of the matrix M = UΣV⊤ we can write

Trace(MM⊤) = Trace(UΣV⊤VΣ⊤U
⊤
) (25)

which, due to the orthonormality of the singular vectors, leads us to

Trace(MM⊤) = Trace(UΣΣ⊤U
⊤
) (26)

Considering the Trace(AB) = Trace(BA) we can write the right hand side us

Trace(MM⊤) = Trace(ΣΣ⊤U
⊤

U) (27)

hence
Trace(MM⊤) = Trace(ΣΣ⊤) (28)

Since the matrix Σ is diagonal (in the sense that the only elements different than
zeros are the elements Σii and that these are the singular values) the matrix ΣΣ⊤

is a squared diagonal matrix containing the squares of the singular values.
Hence the trace of such matrix is

Trace(MM⊤) = Trace(ΣΣ⊤) =
r

∑
i=1

σ2
i (29)

which proves the initial statement
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(c) We discussed a similar problem in one of the lectures. Starting from the SVD of the
matrix X = UΣV⊤ we can multiply both sides by U⊤ on the left and by V on
the right obtaining

U⊤XV = U⊤UΣV⊤V = Σ (30)

multiplying both sides, on the right, by a constant vector c1 we get

cU⊤XV1 = cΣ1 (31)

which leads to a vector Rn×1 equal to c(σ1, . . . , σr)⊤

End of Paper.
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