## Exercise sheet 11 solutions

## 1. Non-numerical parts

This formula is given in the question (was explained briefly where it came from in one of the lectures):

$$
p\left(y \mid M_{2}\right)=\frac{\sigma_{1} p\left(y \mid M_{1}\right)}{\sigma_{0} \exp \left(-\left(\mu_{1}-\mu_{0}\right)^{2} /\left(2 \sigma_{1}^{2}\right)\right)} .
$$

Part (a)
The Bayes factor $B_{12}$ follows just by rearranging the preceding formula

$$
B_{12}=\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}=\frac{\sigma_{0}}{\sigma_{1}} \exp \left(-\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{2 \sigma_{1}^{2}}\right) .
$$

Part (b)
The posterior parameters in model $M_{2}$ are

$$
\mu_{1}=\frac{\mu_{0} / \sigma_{0}^{2}+n \bar{y} / \sigma^{2}}{1 / \sigma_{0}^{2}+n / \sigma^{2}}, \sigma_{1}^{2}=\frac{1}{1 / \sigma_{0}^{2}+n / \sigma^{2}}
$$

For large enough $\sigma_{0}$, we can ignore the $\frac{1}{\sigma_{0}^{2}}$ terms, and so $\mu_{1} \approx \frac{n \bar{y} / \sigma^{2}}{n / \sigma^{2}}=\bar{y}$ and $\sigma_{1}^{2} \approx \frac{\sigma^{2}}{n}$. Hence

$$
B_{12} \approx \frac{\sqrt{n} \sigma_{0}}{\sigma} \exp \left(-\frac{n\left(\bar{y}-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right)
$$

Part (f)
Once the prior standard deviation $\sigma_{0}$ reaches a large enough value (compared to $\sigma / \sqrt{n}$, which determines the scale of the likelihood function), then increasing $\sigma_{0}$ further hardly changes the posterior mean and standard deviation for $\mu$ in model $M_{2}$. This is because for a large enough value of $\sigma_{0}$, the posterior density is approximately proportional to the likelihood.
However the posterior model probabilities do change as $\sigma_{0}$ increases. This is due to the Bayes factor increasing approximately proportional to $\sigma_{0}$ for large enough $\sigma_{0}$, so here the Bayes factor is approximately multiplied by 10 when $\sigma_{0}$ changes from 10 to 100 .
2. For model $M_{2}$, the likelihood for the Poisson model with mean $\lambda$ is

$$
p\left(y \mid \lambda, M_{2}\right)=\frac{\lambda^{S} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!}, \text { where } S=\sum_{i=1}^{n} y_{i} .
$$

The prior distribution for model $M_{2}$ is

$$
p\left(\lambda \mid M_{2}\right)=\frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)}
$$

For general data

$$
p\left(y \mid M_{1}\right)=\frac{e^{-n}}{\prod_{i=1}^{n} y_{i}!},
$$

the likelihood function with $\lambda=1$.

$$
\begin{aligned}
p\left(y \mid M_{2}\right) & =\int_{0}^{\infty} p\left(\lambda \mid M_{2}\right) p\left(y \mid \lambda, M_{2}\right) d \lambda \\
& =\int_{0}^{\infty} \frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)} \frac{\lambda^{S} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!} d \lambda
\end{aligned}
$$

(a) Here $S=0$ and $\alpha=1, \beta=1$. In this case

$$
\begin{aligned}
p\left(y \mid M_{1}\right) & =e^{-n} \\
p\left(y \mid M_{2}\right)=\int_{0}^{\infty} e^{-\lambda} e^{-n \lambda} d \lambda & =\int_{0}^{\infty} e^{-(n+1) \lambda} d \lambda=\frac{1}{n+1} .
\end{aligned}
$$

Hence the Bayes factor is

$$
B_{12}=\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}=(n+1) e^{-n} .
$$

For $n=10, B_{12}=0.000499$.
The posterior probability of model $M_{1}$ is

$$
p\left(M_{1} \mid y\right)=\frac{B_{12}}{1+B_{12}}=0.000499
$$

(b) For general data and $\alpha=1, \beta=1$,

$$
p\left(y \mid M_{2}\right)=\int_{0}^{\infty} e^{-\lambda} \frac{\lambda^{S} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!} d \lambda=\int_{0}^{\infty} \frac{\lambda^{S} e^{-(n+1) \lambda}}{\prod_{i=1}^{n} y_{i}!} d \lambda
$$

Put $w=(n+1) \lambda, \frac{d w}{d \lambda}=n+1$.

$$
\begin{aligned}
p\left(y \mid M_{2}\right) & =\int_{0}^{\infty} \frac{w^{S} e^{-w}}{(n+1)^{S+1} \prod_{i=1}^{n} y_{i}!} d w=\frac{\Gamma(S+1)}{(n+1)^{S+1} \prod_{i=1}^{n} y_{i}!} \\
& =\frac{S!}{(n+1)^{S+1} \prod_{i=1}^{n} y_{i}!}
\end{aligned}
$$

Hence the Bayes factor is

$$
B_{12}=\frac{(n+1)^{S+1} e^{-n}}{S!} .
$$

