Selected solutions to PS II

1. The rough behaviour of 4 over tire is as follows

$$
t=0
$$

$$
t=1
$$

t lavage

2.

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{L} U(x, t) d x \\
= & \int_{0}^{L} \frac{d}{d t}[u(x, t)] d x \\
= & \int_{0}^{L} U_{t}(x, t) d x \\
= & \int_{0}^{L} k U_{x x}(x, t) d x \quad \leftarrow \text { by the POE }
\end{aligned}
$$

$$
\begin{aligned}
& =\left.k U_{x}\right|_{0} ^{L} \\
& =k U_{x}(L, t)-\xi U_{x}(0, t) \in \text { by the Neunam } \\
& =0-0 \\
& =0
\end{aligned}
$$

So $\int_{0}^{2} u(x, t) d x$ is a conserved quantity.
3. If U does not depend on t, the PPE becomes

$$
\begin{aligned}
0=u_{t} & =7 k u_{x x} \\
\text { so }_{x y} & =0 \\
u_{x} & =c \\
u & =c x+d \quad \text { a linear pruction }
\end{aligned}
$$

If the temperature distribution does not charge with five, it we to be a linear function.
4. Let us consider $U(x, t)=e^{-b t} V(x, t)$ namely $V(x, t)=e^{b t} U(x, t)$
we hove $U_{x}(x, t)=e^{\text {bt }} U_{x}(x, t)$

$$
V_{x x}(x, t)=e^{b t} u_{x x}(x, t)
$$

and $\quad V_{t}(x, t)=b e^{b t} d(x, t)+e^{b t} d_{t}(x, t)$
So we get

$$
V_{t}-k V_{x x}=b e^{b t} \cdot u+e^{b t} \cdot u_{t}-k e^{b t} \cdot u_{x x}
$$

by the $\rightarrow=e^{b t} \cdot\left[u_{t}-z u_{x x}+b u\right]$ POE satisfied by a.

$$
\begin{aligned}
& =e^{b t} \cdot 0 \\
& =0
\end{aligned}
$$

So V satisfied the equation

$$
\left\{\begin{array}{l}
V_{t}-\vec{F} V_{x x}=0 \\
V(x, 0)=e^{0 \cdot t} u(x, 0)=e \cdot f(x)
\end{array}\right.
$$

By Fourier-poisson formula, we get

$$
V(x, t)=\frac{1}{\sqrt{\xi \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y \mid)^{2}}{4 F t}} e \cdot f(y) d y
$$

and so

$$
\begin{aligned}
u(x, t) & =e^{-b t} v(x, t) \\
& =\frac{e^{-b t}}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \cdot e \cdot f(y) d y
\end{aligned}
$$

