
MTH6134 2022 Sample Exam

1. Likelihood

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

Suppose that Yi ∼ N(µi, σ
2) for i = 1, 2, . . . , n all independent with σ2

known; and that µi = β1xi+β2zi where xi and zi are known covariates.

A) Write down the likelihood for the data y1, . . . , yn.

B) Find the maximum likelihood estimators β̂1 and β̂2 of β1 and β2.

C) Prove that β̂1 is an unbiased estimator of β1.

D) Explain why β̂1 has a normal distribution.

Notes for grader:

� A) The likelihood is
L(β1, β2; y) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑n
i=1(yi − β1xi − β2zi)

2
)
.

Students are not meant to proceed further expanding the quadratic
expression in the exponent of the likelihood, but to use the expo-
nential of the sum.

� B) Stemming from the log-likelihood l(β1, β2; y) = −n
2
log(2πσ2)−

1
2σ2

∑n
i=1(yi − β1xi − β2zi)

2, students are meant to compute par-
tial derivatives ∂l

∂β1
= 1

σ2

∑n
i=1 xi(yi − β1xi − β2zi) and ∂l

∂β2
=

1
σ2

∑n
i=1 zi(yi − β1xi − β2zi). The maximum likelihood estimates

satisfy the system

( ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

)(
β̂1

β̂2

)
=

( ∑n
i=1 xiyi∑n
i=1 ziyi

)
.

The solution of this system are the maximum likelihood estimates
β̂1 =

1
∆
(
∑n

i=1 z
2
i

∑n
i=1 xiyi −

∑n
i=1 xizi

∑n
i=1 ziyi) and

β̂2 =
1
∆
(
∑n

i=1 x
2
i

∑n
i=1 ziyi −

∑n
i=1 xizi

∑n
i=1 xiyi), with

∆ =
∑n

i=1 x
2
i

∑n
i=1 z

2
i − (

∑n
i=1 xizi)

2. This is a standard calcula-
tion, albeit slightly lengthy.

� C) Recall that the maximum likelihood estimates are(
β̂1

β̂2

)
=

( ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

)−1( ∑n
i=1 xiyi∑n
i=1 ziyi

)
, and that

the expectation of Yi is E(Yi) = µi = β1xi+β2zi = (xi zi)

(
β1

β2

)
.

Using the previous expectation in the vector

( ∑n
i=1 xiyi∑n
i=1 ziyi

)
above,
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this vector is rewritten as
∑n

i=1 xi(xi zi)

(
β1

β2

)
∑n

i=1 zi(xi zi)

(
β1

β2

)
 =

( ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

)(
β1

β2

)
.

We collect what we have done and we have

E

(
β̂1

β̂2

)
=

( ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

)−1( ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

)(
β1

β2

)
,

that is E

(
β̂1

β̂2

)
=

(
β1

β2

)
. This is a way to simultaneously prove

that both β̂1, β̂2 are unbiased estimates.

This can also be done individually by substituting the expectation
of yi in the explicit equation for β̂1. Let us work this second
approach, noting that the expectation of Yi is a vector product

E(β̂1) =
1
∆

(∑n
i=1 z

2
i

∑n
i=1 xi(xi zi)

(
β1

β2

)
−
∑n

i=1 xizi
∑n

i=1 zi(xi zi)

(
β1

β2

))
.

The part between brackets above becomes

(
∑n

i=1 z
2
i

∑n
i=1 x

2
i

∑n
i=1 z

2
i

∑n
i=1 xizi)

(
β1

β2

)
−((

∑n
i=1 xizi)

2
∑n

i=1 z
2
i

∑n
i=1 xizi)

(
β1

β2

)
, which after simplifi-

cation becomes

E(β̂1) =
1
∆
(
∑n

i=1 z
2
i

∑n
i=1 x

2
i − (

∑n
i=1 xizi)

2 0)

(
β1

β2

)
and then

E(β̂1) = 1
∆
(
∑n

i=1 z
2
i

∑n
i=1 x

2
i − (

∑n
i=1 xizi)

2)β1. We finally note
that the expression multiplying β1 is precisely ∆ and we have
thus shown that E(β̂1) = β1.
Either approach to show unbiasedness is equally fine.

� D) The distribution of β̂1 is normal because it is a linear combi-
nation of normal random variables. This can be seen by noting
that β̂1 =

∑n
i=1 ciyi with the ci taken from the expression of β̂1.

The explicit form of the ci coefficients is

ci =
1
∆

(
(
∑n

j=1 z
2
j )xi − (

∑n
j=1 xjzj)zi

)
.

Note the change of summation indices to j to clarify the coef-
ficients ci. The argument based on the sum of normal random
variables is enough.
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2. Discharge data (1)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

The numbers of babies surviving to discharge from a hospital (y) out
of the number admitted to neonatal intensive care (r) for two epochs
(w) and three gestational ages (x) in weeks were recorded. Below are
the data.

x 23 23 24 24 25 25
w 1 2 1 2 1 2
r 81 65 165 198 229 225
y 15 12 40 82 119 142

Let Yjk denote the number of babies surviving to discharge out of the
rjk of gestational age xk admitted to neonatal intensive care of epoch j.
Then it is assumed that Yjk ∼ Bin(rjk, πjk) for j = 1, 2 and k = 1, 2, 3,
all independent, where log(πjk/(1−πjk)) = αj +βjxk. This model was
fit to data using R and the following output was obtained:
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A) Plot the proportions of babies surviving to discharge against gesta-
tional age by epoch. What do you observe, what are your conclusions?

B) Write down the fitted logistic regression model for each epoch.

Notes for grader:

� A) Here is a plot of proportions of babies surviving discharge
against gestational age by epoch.
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The plot suggests that the regression lines for the first two epochs
are not parallel. In particular, most of the survival rates have
improved from the first epoch to the second.

� B) The maximum likelihood estimates of α1, α2, β1 and β2 are
α̂1 = −22.9574, α̂2 = −23.4655, β̂1 = 0.9188 and β̂2 = 0.9611.
Hence the fitted regression model is

π̂1k = 1/ (1 + exp(−(−22.9574 + 0.9188xk)))

for those babies at the first epoch, and

π̂2k = 1/ (1 + exp(−(−23.4655 + 0.9611xk)))

for those at the second.
The identity eu/(1 + eu) ≡ 1/(1 + e−u) for the inverse logistic
function was used above. In other words, the regression models
can be equivalently written as

π̂1k = e−22.9574+0.9188xk/(1 + e−22.9574+0.9188xk)
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and
π̂2k = e−23.4655+0.9611xk/(1 + e−23.4655+0.9611xk).

Either version is fine, provided the correct coefficients have been
used.

3. Discharge data (2)

numerical
�� ��1.0 point

�� ��0.10 penalty

C) Write the value of the residual deviance.

� 3.6227808± 5e-2 ✓

4. Discharge data (3)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

D) Use this deviance value to assess the goodness of fit of the model.

Notes for grader:

� D) Concerning the goodness of fit of the model, we are fitting a
model with p = 4 parameters and the maximal model has n = 6
parameters. The data gives D = 3.6228, with p-value 0.1634
(computed with the χ2

2 distribution). As the p-value is bigger
than α = 0.05, we have no evidence against the logistic regression
model.

5. Discharge data (4)

numerical
�� ��1.0 point

�� ��0.10 penalty

E) Using the output of the model you just fit, estimate the difference
β1 − β2.

� -0.0422486± 5e-2 ✓

6. Discharge data (5)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

F) Give an approximate 95 percent confidence interval for β1 − β2.

G) Comment on the confidence interval.

Notes for grader:
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� F) An approximate 95% confidence interval for β1 − β2 is β̂1 −
β̂2 ± 1.96

√
v̂33 + v̂44. The estimates give the difference β̂1 − β̂2 =

0.9188 − 0.9611 = −0.0423; the estimated variance of this differ-
ence is v̂33+ v̂44 = 0.14992+0.14592 = 0.0438 so that the standard
deviation of the difference is

√
v̂33 + v̂44 = 0.2093. We collect all

the information to retrieve the confidence interval −0.0423±1.96 ·
0.2093 = −0.0423± 0.4102, that is (−0.4525, 0.3679).
G) As the interval contains zero, we cannot reject the null hypoth-
esis of the equality between coefficients, i.e. H0 : β1 = β2.

7. Residents (1)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

A study of 49 attending physicians and 71 surgical residents in training
at a university hospital was carried out to investigate whether the two
groups of surgeons were applying unnecessary blood transfusions at
different rates. For each surgeon, the number of blood transfusions
prescribed unnecessarily in one year was recorded. The contingency
table below summarizes the data.

Let Yjk denote the number of surgeons classified in row j and column
k. Then it is assumed that the Yjk for row j have a multinomial dis-
tribution with parameters yj· and θjk for j = 1, 2 and k = 1, 2, 3, 4,
and that the rows are independent, where yj· =

∑4
k=1 yjk and θjk is the

probability that a surgeon is classified in row j and column k. The null
hypothesis is that the distributions of unnecessary blood transfusions
are the same for the two groups of surgeons.

A) Briefly explain how you would enter these data into R.

B) What command would you use to fit a log-linear model to the data?

Notes for grader:

� A) The data would be entered into R column by column.
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c1<-c(2,15)

c2<-c(3,28)

c3<-c(31,23)

c4<-c(13,5)

y<-c(c1,c2,c3,c4)

Then the levels of the rown and column factors would be generated
by

row<-gl(n=2,k = 1,length = 8)

column<-gl(n=4,k = 2, length=8)

Note that an equivalent formulation can be achieved entering the
data row by row. The row and column factors need to be adapted.

� B) A log-linear model is fitted to the data using

blood<-glm(formula=y row+column,family = poisson)

Note that by default the link is log which can be written (or not)
as part of the output.

8. Residents (2)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

C) Obtain the expected values under the null hypothesis. Comment on
what you observe.

Notes for grader:

� C) These values are obtained with the command blood $fitted.values

that yield values 6.942, 10.058, 12.658, 18.342, 22.05, 31.95, 7.35,
10.65. These values have to be formatted into the shape of a table

By comparing these values, we see that surgical residents in train-
ing applied unnecessary blood transfusions more frequently than
attending physicians.
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9. Residents (3)

cloze
�� ��0.10 penalty

D) Compute the deviance and write its value.

numerical
�� ��1 point

35.3312± 1e-1 ✓

E) Compute the value of Pearson’s goodness-of-fit statistic and write
its value.

numerical
�� ��1 point

31.8814± 1e-1 ✓

10. Residents (4)

essay
�� ��1.0 point

�� ��0.10 penalty
�� ��editor

F) What is your conclusion about the numbers of unnecessary blood
transfusions for the two groups of surgeons.

Notes for grader:

� F) The critical value is χ2
3,0.05 = 7.8147, which when compared

against the statistics suggests that there is strong evidence that
the distributions of unnecessary blood transfusions are not the
same for the two groups of surgeons.

Total of marks: 11
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