ASSESSED COURSEWORK 2

A1.

$$
\begin{array}{clll}
\alpha=\lfloor\sqrt{n(n+1)}\rfloor=n & \Rightarrow & \rho_{1}=\frac{1}{\sqrt{n(n+1)}-n}=\frac{\sqrt{n(n+1)}+n}{n} \\
\alpha_{1}=\left\lfloor\frac{\sqrt{n(n+1)}+n}{n}\right\rfloor=2 & \Rightarrow \rho_{2}=\frac{1}{\frac{\sqrt{n(n+1)}+n}{n}-2}=\frac{1}{\frac{\sqrt{n(n+1)}-n}{n}}=\frac{n}{\sqrt{n(n+1)}-n}=\sqrt{n(n+1)}+n \\
\alpha_{2}=\lfloor\sqrt{n(n+1)}+n\rfloor=2 n & \Rightarrow & \swarrow & \rho_{3}=\frac{1}{\sqrt{n(n+1)}+n-2 n}=\frac{1}{\sqrt{n(n+1)}-n}=\rho_{1} \\
\alpha_{3}=\alpha_{1} & \swarrow & \rho_{4}=\rho_{2}
\end{array}
$$

Hence $\sqrt{n^{2}+2}=[n, 2,2 n, 2,2 n, \ldots]=[n ; \overline{2,2 n}]$.

A2.

Let $r=[1 ; 6,1,6, \ldots]$. By definition,

$$
r=1+\frac{1}{6+\frac{1}{r}},
$$

hence $6 r^{2}-6 r-1=0$. By the quadratic formula, we have $r=\frac{3+\sqrt{15}}{6}$. Hence

$$
[4 ; \overline{1,6}]=4+\frac{1}{[1 ; 6,1,6, \ldots]}=4+\frac{1}{\frac{3+\sqrt{15}}{6}}=1+\sqrt{15}
$$

Date: December 15, 2023.

A3.

By Theorem 44, it suffices to establish that the inquality

$$
\left|e-\frac{2721}{1001}\right|<\frac{1}{2(1001)^{2}}
$$

holds. Since $e=2.71828182845 \ldots$, observe

$$
|e-2.71828171828 \ldots|<0.00000011017<0.0000004 \ldots<\frac{1}{2004002}=\frac{1}{2(1001)^{2}}
$$

A4. We firstly compute that the continued fraction for $\sqrt{29}$ is

$$
[5 ; \overline{2,1,1,2,10}]
$$

with $l=5$. It follows from Theorem 48 that the fundamental solution for $x^{2}-29 y^{2}= \pm 1$ is given by $\left(s_{l-1}, t_{l-1}\right)=\left(s_{4}, t_{4}\right)=(70,13)$ [we may either use the recursive definition of $\left(s_{n}, t_{n}\right)$ to work out $\left(s_{1}, t_{1}\right)=(11,2),\left(s_{2}, s_{3}\right)=(16,3),\left(s_{3}, t_{3}\right)=(27,5)$, or directly compute the 4 -th convergent $\left.r_{4}=\frac{s_{4}}{t_{4}}=5+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}\right]$.

Since $s_{4}^{2}-29 t_{4}^{2}=70^{2}-29 \cdot 13^{2}=-1$, it is necessary to make appeal to Theorem 51 to find $\left(v_{2}, w_{2}\right) \in \mathbb{N} \times \mathbb{N}$ satisfying

$$
v_{2}+w_{2} \sqrt{29}=(s+t \sqrt{29})^{2}
$$

where (s, t) is the fundamental solution $\left(s_{4}, t_{4}\right)=(70,13)$, because the pair satisfies

$$
v_{2}^{2}-29 w_{2}^{2}=(-1)^{2}=1
$$

in fact we know that $\left(v_{2}, w_{2}\right)=\left(s_{2 \cdot 5-1}, t_{2 \cdot 5-1}\right)=\left(s_{9}, t_{9}\right)$ and is the smallest solution to $x^{2}-29 y^{2}=1$.

$$
\begin{aligned}
& \text { As }(70+13 \sqrt{29})^{2}=9801+1820 \sqrt{29}, \text { we know } \\
& \qquad\left(s_{9}, t_{9}\right)=(9801,1820) .
\end{aligned}
$$

Of course it is perfectly fine to compute $\left(s_{9}, t_{9}\right)$ by hand, but the point of this exercise to see that this 'technique' would allow us to compute convergent $r_{n}=\frac{s_{n}}{t_{n}}$ rather quickly even if n is large.

