ASSESSED COURSEWORK 2
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Let r = [1;6,1,6,...]. By definition,
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hence 6r? — 6r — 1 = 0. By the quadratic formula, we have r = +T Hence
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A3.

By Theorem 44, it suffices to establish that the inquality
2721 1
e~ Too1/< 2(1001)2
holds. Since e = 2.71828182845..., observe
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A4. We firstly compute that the continued fraction for V29 is

[5;2,1,1,2,10]

with [ = 5. It follows from Theorem 48 that the fundamental solution for z2 — 29y? = +£1 is
given by (s;-1,t,—1) = (s4,t4) = (70, 13) [we may either use the recursive definition of (s, t,)
to work out (s1,t1) = (11,2), (s, s3) = (16, 3), (s3,t3) = (27,5), or directly compute the 4-th

le — 2.71828171828...|]< 0.00000011017 < 0.0000004... <

convergent ry = M54 ].
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Since s2 — 29t2 = 70> — 29 - 132 = —1, it is necessary to make appeal to Theorem 51 to
find (vq, w2) € N x N satisfying

vy + weV/29 = (s + tV/29)?
where (s,t) is the fundamental solution (sy4,ts) = (70, 13), because the pair satisfies
vy —29w5 = (—1)% = 1;

in fact we know that (vo,ws) = (S25-1,t25-1) = (So,t9) and is the smallest solution to
x? —29y% = 1.

As (70 + 13v/29)? = 9801 + 18201/29, we know
(Sg, tg) = (9801, 1820)
Of course it is perfectly fine to compute (sg, t9) by hand, but the point of this exercise to see

S
that this ‘technique’ would allow us to compute convergent r,, = t_n rather quickly even if n
is large. "



