
ASSESSED COURSEWORK 2

A1.

α = ⌊
√

n(n+ 1)⌋ = n ⇒ ρ1 =
1√

n(n+ 1)− n
=

√
n(n+ 1) + n

n

↙

α1 = ⌊
√
n(n+ 1) + n

n
⌋ = 2 ⇒ ρ2 =

1√
n(n+1)+n

n
− 2

=
1√

n(n+1)−n

n

=
n√

n(n+ 1)− n
=

√
n(n+ 1) + n

↙
α2 = ⌊

√
n(n+ 1) + n⌋ = 2n ⇒ ρ3 =

1√
n(n+ 1) + n− 2n

=
1√

n(n+ 1)− n
= ρ1

↙
α3 = α1 ⇒ ρ4 = ρ2

↙
...

Hence
√
n2 + 2 = [n, 2, 2n, 2, 2n, . . . ] = [n; 2, 2n].

A2.

Let r = [1; 6, 1, 6, . . . ]. By definition,

r = 1 +
1

6 + 1
r

,

hence 6r2 − 6r − 1 = 0. By the quadratic formula, we have r =
3 +

√
15

6
. Hence

[4; 1, 6] = 4 +
1

[1; 6, 1, 6, . . . ]
= 4 +

1
3+

√
15

6

= 1 +
√
15.
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A3.

By Theorem 44, it suffices to establish that the inquality

|e− 2721

1001
|< 1

2(1001)2

holds. Since e = 2.71828182845..., observe

|e− 2.71828171828...|< 0.00000011017 < 0.0000004... <
1

2004002
=

1

2(1001)2
.

A4. We firstly compute that the continued fraction for
√
29 is

[5; 2, 1, 1, 2, 10]

with l = 5. It follows from Theorem 48 that the fundamental solution for x2 − 29y2 = ±1 is
given by (sl−1, tl−1) = (s4, t4) = (70, 13) [we may either use the recursive definition of (sn, tn)
to work out (s1, t1) = (11, 2), (s2, s3) = (16, 3), (s3, t3) = (27, 5), or directly compute the 4-th

convergent r4 =
s4
t4

= 5 +
1

2 +
1

1 +
1

1 + 1
2

].

Since s24 − 29t24 = 702 − 29 · 132 = −1, it is necessary to make appeal to Theorem 51 to
find (v2, w2) ∈ N× N satisfying

v2 + w2

√
29 = (s+ t

√
29)2

where (s, t) is the fundamental solution (s4, t4) = (70, 13), because the pair satisfies

v22 − 29w2
2 = (−1)2 = 1;

in fact we know that (v2, w2) = (s2·5−1, t2·5−1) = (s9, t9) and is the smallest solution to
x2 − 29y2 = 1.

As (70 + 13
√
29)2 = 9801 + 1820

√
29, we know

(s9, t9) = (9801, 1820).

Of course it is perfectly fine to compute (s9, t9) by hand, but the point of this exercise to see

that this ‘technique’ would allow us to compute convergent rn =
sn
tn

rather quickly even if n

is large.


