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• e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the
subject line;
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Question 1 [23 marks]. This question is similar to those on exercise sheets.

(a) The likelihood is
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∏
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(b) The log-likelihood is
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2

log(2πσ
2)− 1

2σ2

n

∑
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Setting these derivatives to zero, we obtain
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Now, the first of these yields
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.

Substituting this equation into the previous one, we have
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which may be rearranged to give
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[12]
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(c) We can write
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and so β̂1 is an unbiased estimator of β1. [4]

(d) The distribution of β̂1 is normal because β̂1 is a linear combination of normal random variables. [1]
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Question 2 [20 marks]. This question is similar to examples in the lecture notes.

(a) A plot of the proportions of babies surviving to discharge against gestational age by epoch is
given below.
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This suggests that the regression lines for the two epochs are not parallel. In particular, most of
the survival rates have improved from the first epoch to the second. [6]

(b) Since the maximum likelihood estimates of α1, α2, β1 and β2 are α̂1 =−22.9574,
α̂2 =−23.4655, β̂1 = 0.9188 and β̂2 = 0.9611, the fitted logistic regression model is

π̂1k =
e−22.9574+0.9188xk

1+ e−22.9574+0.9188xk

for those babies at the first epoch and

π̂2k =
e−23.4655+0.9611xk

1+ e−23.4655+0.9611xk

for those at the second. [6]

(c) In this case, we are fitting a logistic regression model with p = 4 parameters and the maximal
model has n = 6 parameters. The data give D = 3.6228. Since χ2

2,0.1 = 4.605, the p-value is
P > 0.1, and so there is no evidence that the logistic regression model does not fit the data well. [4]
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(d) An approximate 95% confidence interval for β1−β2 is

β̂1− β̂2±1.96×
√

v̂33 + v̂44 = −0.0423±1.96×
√

0.14992 +0.14592

= −0.0423±1.96×0.2092

= −0.0423±0.4100

or (−0.4523,0.3677). [4]
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Question 3 [22 marks]. Part (a) is bookwork, and parts (b), (c) and (d) are similar to questions on
exercise sheets.

(a) We know that µi = E(Yi) = riπi and

ηi = log{− log(1−πi)}

= log
{
− log

(
ri−µi

ri

)}
= g(µi).

It follows that we can write the model in the form g(µi) = βββ
>xi, where βββ = (β0,β1)> and

xi = (1,xi)>. Since the distribution of each Yi is in canonical form and depends on a single
parameter πi, this is a generalised linear model. [4]
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∂ µi
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.

Thus, since Var(Yi) = riπi(1−πi), the Fisher information matrix is
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[8]

(c) We have
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where
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This means that, for large n, β̂1 ∼ N(β1,v22), where v22 = ∑
n
i=1 ri(1−πi){log(1−πi)}2/(πi|V |). [8]

(d) For large n, under H0, Z = β̂1/
√

v̂22 ∼ N(0,1). Consequently, the critical region for a test of
H0 : β1 = 0 against H1 : β1 6= 0 with approximate significance level α is R = {y : |z|> z α

2
}. [2]
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Question 4 [23 marks]. This question is similar to those on exercise sheets.

(a) The data would be entered into R column by column:

c1 <- c(2,15)
c2 <- c(3,28)
c3 <- c(31,23)
c4 <- c(13,5)
y <- c(c1,c2,c3,c4)

Then the levels of the row and column factors would be generated by

row <- gl(2,1,length=8)
column <- gl(4,2,length=8)

A log-linear model is fitted to the data using

blood <- glm(y ~ row + column,poisson)

[4]

(b) The null hypothesis states that E(Yjk) = y j.θ.k, where θ.k = ∑
2
j=1 θ jk. By Birch’s conditions, we

know that the maximum likelihood estimate of θ.k under the null hypothesis is θ̂.k = y.k/n, where
n = 120. It follows that the expected frequency for cell ( j,k) is

e jk = y j.θ̂.k =
y j.y.k

n
.

[4]

(c) The expected values under the null hypothesis are given in the following table:

Unnecessary Blood Transfusion
Surgeon Frequent Occasionally Rarely Never Total
Attending 6.942 12.658 22.050 7.350 49
Resident 10.058 18.342 31.950 10.650 71

By comparing these with the observed values, we see that surgical residents in training applied
unnecessary blood transfusions more frequently than attending physicians. [5]

(d) The deviance is

D = 2
2

∑
j=1

4

∑
k=1

y jk log
(

y jk

e jk

)
= 35.331

and the value of Pearson’s goodness-of-fit test statistic is

X2 =
2

∑
j=1

4

∑
k=1

(y jk− e jk)2

e jk
= 31.881.

Since χ2
3,0.001 = 16.268, the p-value is P < 0.001, and so there is very strong evidence that the

distributions of unnecessary blood transfusions are not the same for the two groups of surgeons. [10]
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Question 5 [12 marks]. This question is similar to those on exercise sheets.

(a) We know that µi = E(Ti) = 1/λi. Consequently, we have ηi = 1/µi, which corresponds to the
reciprocal link. [1]

(b) The likelihood is

L(β ; t) =
n

∏
i=1

(
βxie−βxiti

)δi
(

e−βxiti
)1−δi

= β ∑
n
i=1 δi

(
n

∏
i=1

xδi
i

)
e−β ∑

n
i=1 xiti ,

where δi = 1 if Ti = ti and δi = 0 if Ti > ti. [4]

(c) The log-likelihood is

`(β ; t) =
n

∑
i=1

δi log(β )+
n

∑
i=1

δi log(xi)−β

n

∑
i=1

xiti.

Thus, we have
d`

dβ
= ∑

n
i=1 δi

β
−

n

∑
i=1

xiti.

Setting this derivative to zero yields the maximum likelihood estimator β̂ = ∑
n
i=1 δi/∑

n
i=1 xiTi. [5]

(d) The details of the fitted model are obtained using

model <- glm(t ~ x - 1,family=gamma)
summary(model,dispersion=1)

[2]

End of Paper.
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