MTH5103 Complex Variables

Week 9 Practice Exercies

These exercises are for your daily practice.

- 1. Consider the path $\gamma_3 : [0,1] \to \mathbb{C}$ defined by $\gamma_1(t) = e^{4\pi i t}$. Graph the curve represented by this parametrisation. How does this compare with γ_1 and γ_2 from the first Example of the Week 9 Lecture Notes?
- 2. Give a parametrisation for the curve represented by a square with vertices $(\pm 1, \pm 1)$, traversed once anticlockwise.
- 3. Parametrise a curve starting at z = 0 and ending at the point z = 4 which passes through the upper semicircle of the unit circle centred at 1 and passing through the lower semicircle of the unit circle centred at 3. First graph the circles and trace out the curve to be parametrised. Hint: Use the sum of two parametrisations, one for each semicircle.
- 4. Calculate the length of the square contour found in exercise # 2. Repeat this exercise for #3.
- 5. Let C be a semicircle parametrised by the path $\gamma(\theta) = 3e^{i\theta}$, $0 \le \theta \le \pi$ and let $f(z) = z^3 + 7z + 4$. Calculate $\int_C f(z)dz$.
- 6. Using the ML Inequality, etimate the integral $\left| \int_{C} f(z) dz \right|$ for each of the functions and contours in the previous exercises.