MTH5103 Complex Variables

Week 9 Practice Exercies

These exercises are for your daily practice.

1. Consider the path $\gamma_{3}:[0,1] \rightarrow \mathbb{C}$ defined by $\gamma_{1}(t)=e^{4 \pi i t}$. Graph the curve represented by this parametrisation. How does this compare with γ_{1} and γ_{2} from the first Example of the Week 9 Lecture Notes?
2. Give a parametrisation for the curve represented by a square with vertices $(\pm 1, \pm 1)$, traversed once anticlockwise.
3. Parametrise a curve starting at $z=0$ and ending at the point $z=4$ which passes through the upper semicircle of the unit circle centred at 1 and passing through the lower semicircle of the unit circle centred at 3 . First graph the circles and trace out the curve to be parametrised. Hint: Use the sum of two parametrisations, one for each semicircle.
4. Calculate the length of the square contour found in exercise \# 2. Repeat this exercise for \#3.
5. Let C be a semicircle parametrised by the path $\gamma(\theta)=3 e^{i \theta}, 0 \leq \theta \leq \pi$ and let $f(z)=z^{3}+7 z+4$. Calculate $\int_{C} f(z) d z$.
6. Using the ML Inequality, etimate the integral $\left|\int_{C} f(z) d z\right|$ for each of the functions and contours in the previous exercises.
