MTH5103 Complex Variables

Week 6 Practice Exercies

These exercises are for your daily practice.

1. Consider the function $f(z)=\frac{1}{2 z-3}$.
(a) Find the power series expansion of $f(z)$ about the point $z_{0}=0$ and determine the radius of convergence. Hint: $R=\frac{3}{2}$.
(b) Find the power series expansion of $f(z)$ about the point $z_{0}=2$ and determine the radius of convergence. Hint: $R=\frac{1}{2}$.
(c) Find the power series expansion of $f(z)$ about the point $z_{0}=\frac{3}{2}+i$ and determine the radius of convergence. Hint: $R=1$.
(d) Draw the various discs of convergence in each of (a) - (c) and discuss your answers in the context of the results we have stated on power/Taylor series.
2. Consider the function

$$
f(x)= \begin{cases}e^{-1 / x} & x>0 \tag{1}\\ 0 & x \leq 0\end{cases}
$$

Graph/sketch this function. Show that this function satisfies $f^{(n)}(0)=0$ for all $n \geq 0$ so its Taylor series must be $0+0 \cdot x+0 \cdot x^{2}+\cdots=0$. Why is f itself is not equal to its Taylor series?
3. When finding the Laurent series of $\frac{1}{1-z}$ to equal $\sum_{n=1}^{\infty}(-1) \cdot \frac{1}{z^{n}}$, why is the point $z=0$ not a problem?
4. Draw the annulus $A=\{z: 0<|z-1|<1\}$. What is the Laurent series of $f(z)=\frac{1}{(z-1)(z-2)}$ on A ? Do this exercise without looking at the notes!

