MTH5103 Complex Variables

Week 6 Practice Exercies

These exercises are for your daily practice.

- 1. Consider the function $f(z) = \frac{1}{2z-3}$.
 - (a) Find the power series expansion of f(z) about the point $z_0=0$ and determine the radius of convergence. Hint: $R=\frac{3}{2}$.
 - (b) Find the power series expansion of f(z) about the point $z_0 = 2$ and determine the radius of convergence. Hint: $R = \frac{1}{2}$.
 - (c) Find the power series expansion of f(z) about the point $z_0 = \frac{3}{2} + i$ and determine the radius of convergence. Hint: R = 1.
 - (d) Draw the various discs of convergence in each of (a) (c) and discuss your answers in the context of the results we have stated on power/Taylor series.
- 2. Consider the function

$$f(x) = \begin{cases} e^{-1/x} & x > 0 \\ 0 & x \le 0 \end{cases} . \tag{1}$$

Graph/sketch this function. Show that this function satisfies $f^{(n)}(0)=0$ for all $n\geq 0$ so its Taylor series must be $0+0\cdot x+0\cdot x^2+\cdots=0$. Why is f itself is not equal to its Taylor series?

- 3. When finding the Laurent series of $\frac{1}{1-z}$ to equal $\sum_{n=1}^{\infty} (-1) \cdot \frac{1}{z^n}$, why is the point z=0 not a problem?
- 4. Draw the annulus $A=\{z: 0<|z-1|<1\}$. What is the Laurent series of $f(z)=\frac{1}{(z-1)(z-2)}$ on A? Do this exercise without looking at the notes!