Complex Variables Final Exam 2020 Solutions
(Q1) a) Since $i+i^{2}+i^{3}+i^{4}=i-1-i+1=0$, we get

$$
i+i^{2}+\cdots+i^{6}=i-1
$$

Since for any $z_{1}, z_{2} \in \mathbb{C} \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ and given $z_{2} \neq 0 \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$ we obtain

$$
\begin{aligned}
& \left|\frac{(2-2 i)^{2}(3 i-4)}{\left(i+i^{2}+\cdots+i 6\right)}\right|=\frac{|2-2 i|^{2}|3 i-4|}{\mid i-1)^{6}}=\frac{\left(\sqrt{2^{2}+(-2)^{2}}\right)^{2} \sqrt{3^{2}+(-4)}}{\left(\sqrt{1^{2}+(-1)^{2}}\right)^{6}} \\
= & \frac{8 \cdot 5}{2^{\frac{1}{2} \cdot 6}}=\frac{8 \cdot 5}{2^{3}}=\frac{8 \cdot 5}{8}=5
\end{aligned}
$$

(b) $z^{7}=4+3 i \Leftrightarrow z=\sqrt[7]{4+3 i}$. Let us write $4+3 i$ in polar form:

$$
\begin{aligned}
& |4+3 i|=\sqrt{4^{2}+3^{2}}=5 \quad \cos \theta=\frac{4}{5}, \sin \theta=\frac{3}{5} \Rightarrow \\
& \left.\theta=\arccos \frac{4}{5}+2 \pi k \text { (or } \arcsin \frac{3}{5}+2 \pi k\right)
\end{aligned}
$$

$$
\text { Thus } \sqrt[7]{4+3 i}=5^{1 / 7}\left(\cos \left(\frac{\arccos \left(\frac{4}{5}\right)+2 \pi k}{7}\right)+i \sin \left(\frac{\arccos \left(\frac{4}{5}\right)+2 \pi k}{7}\right)\right)
$$

for $k=0,1,2,3,4,5,6$.
Q2)(a) Let $\sum_{n=0}^{\infty} Q_{n}, Q_{n} \in \mathbb{C}$. Consider the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\mid a_{n}}=L$

- If the limit exists and $L<1$, then $\sum_{n=0}^{\infty} Q_{n}$ converges absolutely
- If the limit exists and $L>1$, then $\sum_{n=0}^{\infty} a_{n}$ diverges
- If the limit does not exist or $L=1$, the test is inconclusi
(b) The Radius of convergence

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n!/ n^{n}}{(n+1)!/(n+1)^{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n!}{n^{n}} \cdot \frac{(n+1)^{n+1}}{(n+1)!} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{n}} \frac{(n+1)^{n+1}}{n+1}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{aligned}
$$

Thus, $R=e$, namely the series converges for

$$
|z-2 i|<e
$$

(c) Let us plug $z=2 i-2$ and check whether the resu is inside the disc of convergence:

$$
|2 i-2-2 i|=|-2|=2<e
$$

thus the series converges absolutely for $z=2 i-2$
(Q3) (Q) We use the Taylor series expansion for $\sin z$ about $z=0$

$$
\begin{aligned}
& \text { about } z=0 \\
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\ldots
\end{aligned}
$$

Plugging $\frac{1}{z}$ instead of z gives us

$$
\sin \frac{1}{z}=\frac{1}{z}-\frac{1}{3!} \frac{1}{z^{3}}+\frac{1}{5!} \frac{1}{z^{5}}-\frac{1}{7!} \frac{1}{z^{7}}+\ldots
$$

Thus

$$
\begin{aligned}
z^{2} \sin \frac{1}{z} & =z^{2}\left(\frac{1}{z}-\frac{1}{3!} \frac{1}{z^{3}}+\frac{1}{5!} \frac{1}{z^{5}}-\frac{1}{7!} \frac{1}{z^{4}}+\cdots\right) \\
& =z-\frac{1}{3!} \frac{1}{z}+\frac{1}{5!} \frac{1}{z^{3}}-\frac{1}{7!} \frac{1}{z^{5}}+\cdots
\end{aligned}
$$

By definition the residue is the coefficient of the term $\frac{1}{z}=\frac{1}{z-0}$ in the expansion, therefore

$$
\operatorname{Res}\left(z^{2} \sin \frac{1}{z}, 0\right)=-\frac{1}{3!}=-\frac{1}{6}
$$

(b) From (a) we get

$$
\begin{aligned}
z^{2} \sin \frac{1}{z} & =z-\frac{1}{3!} \frac{1}{z}+\frac{1}{5!} \frac{1}{z^{3}}-\frac{1}{7!} \frac{1}{z^{5}}+\cdots \\
& =z+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \frac{1}{z^{2 n-1}}
\end{aligned}
$$

therefore $a_{0}=0, a_{1}=1, a_{n}=0$ for all $n>1$

$$
b_{n}=\frac{(-1)^{n}}{(2 n+1)!} \quad n \geq 1
$$

The radius of convergence

$$
\begin{aligned}
R= & \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{Q_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{(2 n+1)!} \cdot \frac{(2 n+3)!}{(-1)^{n+1}}\right|= \\
& =\lim _{n \rightarrow \infty}(2 n+3)(2 n+2)=\infty
\end{aligned}
$$

Thus, the series converges for all $z \neq 0 \in \mathbb{C}$.

$$
z=x+i g, \quad f(z)=f(x, y)=u(x, y)+i v(x, y)
$$

Then $\operatorname{Im} z=y, \operatorname{Re} f(z)=u(x, y)$, namely we have $u(x, y)=y$. We are looking for all the analytic functions of the form

$$
f(x, y)=y+i v(x, y)
$$

Since $f(x, y)$ is analytic, u and v are differentiable and CR equations hold

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
& \frac{\partial u}{\partial x}=0=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=1=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Integration with respect to x of $\frac{\partial V}{\partial x}$ gives

$$
V(x, y)=\int \frac{\partial V}{\partial x} d x=\int-1 d x=-x+c(x y)
$$

To find $c(y)$ we differentiate $v(x, y)$ with respect to y and compare to $\frac{\partial V}{\partial y}$ obtained from $C R$ equations

$$
\frac{\partial v}{\partial y}=c^{\prime}(y)=0 \Rightarrow c \in \mathbb{R} \text { is a constant. }
$$

Thesis $V(x, y)=-x+c$ with $c \in \mathbb{R}$ and

$$
f(x, y)=y+i(-x+c)
$$

(b) The singularities are the zeros of the denominator land the singularities of the denominator) and the singularities (if there are any) of the numerator. The denominator

$$
z^{2}-\frac{\pi^{2}}{4}=0 \Leftrightarrow\left(z-\frac{\pi}{2}\right)\left(z+\frac{\pi}{2}\right)=0 \Leftrightarrow z=\frac{\pi}{2} \text { or } z=-\frac{\pi}{2}
$$

These are 2 isolated singularities.
There is an additional singularity (in the numerator) at $z=0$.
Let us determine the nature of these singularities:
$\equiv=0$ is an isolated singularity To determine its notus We look at the laurent series expansion about $z=0$:

$$
\begin{aligned}
& e^{-\frac{1}{z}}=e^{-z^{-1}}=\sum_{n=0}^{\infty}\left(-\frac{1}{z}\right)^{n} \frac{1}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{z^{n}}= \\
& =1-\frac{1}{z}+\frac{1}{2!z^{2}}-\frac{1}{3!z^{3}}+\frac{1}{4!z^{4}}-\cdots
\end{aligned}
$$

Since the principal part consists of infinitely many nonzero terms by definition it is an essential singularity. $z=\frac{\pi}{2}$: Rewrite: $f(z)=\frac{1}{z-\frac{\pi}{2}} \varphi(z)$, where $\varphi(z)=\frac{e^{-1 / z}}{z+\frac{\pi}{2}}$ $\varphi(z)$ is analytic in a neighborhood of $z=\frac{\pi}{2}$ (and at $z=\frac{\pi}{2}$), and

$$
\varphi\left(\frac{\pi}{2}\right)=\frac{e^{-2 / \pi}}{\frac{\pi}{2}+\frac{\pi}{2}} \neq 0 \quad\left(=\frac{1}{\pi} e^{-\frac{2}{\pi}}\right)
$$

therefore by Prop \circledast (below) $z=\frac{\pi}{2}$ is a simple pole. $z=-\frac{\pi}{2}:$ Rewrite $f(z)=\frac{1}{z+\frac{\pi}{2}} \varphi(z)$, where $\varphi(z)=\frac{e^{-1 / z}}{z-\frac{\pi}{2}}$. $\varphi(z)$ is analytic in a neighborhood of $z=-\frac{\pi}{2}$ (and at $z=-\frac{\pi}{2}$) and $\varphi\left(-\frac{\pi}{2}\right)=-\frac{e^{2 / \pi}}{\pi} \neq 0$. Thus $z=-\frac{\pi}{2}$ is a simple pole (by Prop (*) below).
Prop($z=z_{0}$ is a pole of order $m>0$ of $f \Leftrightarrow f$ can be expressed as $f(z)=\frac{\varphi(z)}{\left(z-z_{0}\right)^{m}}$ where $\varphi(z)$ is analytic at a neighborhood of z_{0} (and at z_{0}) and $\varphi\left(z_{0}\right) \neq 0$.

Q5) (a) Ut f be analytic on and inside a simple, closed, positively oriented contour c, except at a finite number of isolated singularities $z_{1,7}, z_{n}$ all inside C Then $\quad \int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f ; z_{k}\right)$.
(b) There are 2 singularities $z=0, z=1$. Let us first determine the nature of these singularities and compute $\operatorname{Res}(f ; 0), \operatorname{Res}(f ; 1)(z=0$ and $z=1$ both inside $|z|=2$ (our contocer), thus both contribute to the value of the integral.
$z=0$: Let us look at the expansion of $\sin z$ about $z=0$:

$$
\begin{aligned}
\frac{\sin z}{z(z-1)^{2}} & =\frac{1}{z(z-1)^{2}}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots\right)= \\
& =\frac{1}{(z-1)^{2}}\left(1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\frac{z^{6}}{7!}+\cdots\right) \equiv \varphi(z)
\end{aligned}
$$

$\varphi(0)=1 \neq 0 \Rightarrow z=0$ is a removable singularity and $\operatorname{Res}(f ; 0)=0$
$z=1$: Rewrite $f(z)=\frac{1}{(z-1)^{2}} \varphi(z)$, where $\varphi(z)=\frac{\sin z}{z}$ $\varphi(z)$ is analytic in a neighborhood of $z=1$ (and at $z=-$ and $\varphi(1)=\sin 1 \neq 0$, therefore by Prop (*) above $z=1$ is a pole of order 2 . In the case z_{0} is a pol. forder m : $\operatorname{Res}\left(f, z_{0}\right)=\frac{\varphi^{(m-1)}\left(z_{0}\right)}{(m-1)!}$
Thus, we obtain here for $m=2$

$$
\operatorname{Res}(f, 1)=\frac{\varphi^{\prime}(1)}{1!}=\frac{1 \cdot \cos 1-\sin 1}{1}=\cos 1-\sin 1
$$

