MTH5103 Complex Variables

Week 3 Practice Exercies

These exercises are for your daily practice.

- 1. Using the definition of a limit, prove that for any $z_0 \neq 0$, $\lim_{z \to z_0} \frac{\bar{z}}{z} = \frac{\bar{z}_0}{z_0}$.
- 2. Prove each of the three parts of Proposition 1 in the Week 3 Lecture, namely if f(z), g(z) have limits w_0, w_1 as $z \to z_0$, then
 - (a) f(z) + g(z) has limit $w_0 + w_1$ as $z \to z_0$
 - (b) f(z)g(z) has limit w_0w_1 as $z \to z_0$ (Hint: try adding and subtracting $f(z)w_1$ to your expression)
 - (c) $\frac{1}{f(z)}$ has limit $\frac{1}{w_0}$ as $z \to z_0$, provided $w_0 \neq 0$. (Hint: you may need to estimate the value of |f(z)| in this part.)
- 3. Prove that

$$f(z) = \begin{cases} \frac{\bar{z}}{z} & \text{for } z \neq 0 \\ 0 & \text{for } z = 0 \end{cases}$$
 (1)

is continuous at all $z_0 \neq 0$.

4. Prove that the function defined by

$$f(z) = \begin{cases} \frac{z^2}{|z|} & \text{for } z \neq 0\\ 0 & \text{for } z = 0 \end{cases}$$
 (2)

is continuous for all $z_0\in\mathbb{C}$. Note that to check this, you need to show that $\lim_{z\to 0}\frac{z^2}{|z|}=0$ and also that for $z_0\neq 0$, $\lim_{z\to z_0}\frac{z^2}{|z|}=\frac{z_0^2}{|z_0|}$.

- 5. What can you say about the limit of $f(z)=\frac{z^2}{|z|^2}$ as z approaches 0?
- 6. Go through the proof to Proposition 4 in the Week 3 Lecture carefully. Be sure that you understand all of the $\epsilon-\delta$ details!
- 7. Prove that $\lim_{z\to -1}\frac{iz+3}{z+1}=\infty$ by calculating $\lim_{z\to -1}\frac{z+1}{iz+3}$ to be zero.
- 8. Notice that the proof of Proposition 7 in the Week 3 Lecture also holds for real functions. Can you think of a function which is continuous everywhere, but differentiable nowhere?