MTH5103 Complex Variables

Week 1 Practice Exercies

These exercises are for your daily practice.

- 1. Prove Proposition 1 from the Lecture Notes, Week 1.
- 2. Let $z_1 = 5 + i$, $z_2 = 3 i$. Calculate $z_1 z_2$, $\frac{z_1}{z_2}$, $z_1 \overline{z_2}$.
- 3. Use the definition of complex conjugation to prove $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$.
- 4. Why is $\Re z \leq |z|$? Is it true that $\Re z + \Im z \leq |z|$ (why or why not)?
- 5. Calculate the fifth roots of unity, i.e., find $z \in \mathbb{C}$ such that $z^5 = 1$.
- Fill in the diagrams for each of the four examples in the Lecture Notes, Week 1. In particular,
 - (a) Example 1: Graph $z_1 = 1 + i$ and $z_2 = 2 i$ on the complex plane as well as $z_1 + z_2$, $z_1 z_2$, and z_2^{-1} . Verify that $z_1 + z_2$ represents vector addition in \mathbb{R}^2 .
 - (b) Example 2: Pick a point z on the unit circle in the first quadrant of the complex plane \mathbb{C} . Where should $\frac{1}{z}$ be? Use the discussion in this example to interpret $\frac{1}{z}$ for values z inside and outside the unit circle.
 - (c) Example 3: Let w = 1. Draw the n^{th} roots of w for n = 1, 2, 3, 4, 5, 6. How do your diagrams change if $w \neq 1$?
 - (d) Example 4: Verify that the four values we obtain in modulus-argument form for k = 0, 1, 2, 3 indeed correspond to the listed points $\pm(1 \pm i)$ and graph these on the circle of radius $\sqrt{2}$, as we did in class.