MTH5103 Complex Variables

Week 1 Practice Exercies

These exercises are for your daily practice.

1. Prove Proposition 1 from the Lecture Notes, Week 1.
2. Let $z_{1}=5+i, z_{2}=3-i$. Calculate $z_{1} z_{2}, \frac{z_{1}}{z_{2}}, z_{1} \bar{z}_{2}$.
3. Use the definition of complex conjugation to prove $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$.
4. Why is $\Re z \leq|z|$? Is it true that $\Re z+\Im z \leq|z|$ (why or why not)?
5. Calculate the fifth roots of unity, i.e., find $z \in \mathbb{C}$ such that $z^{5}=1$.
6. Fill in the diagrams for each of the four examples in the Lecture Notes, Week 1. In particular,
(a) Example 1: Graph $z_{1}=1+i$ and $z_{2}=2-i$ on the complex plane as well as $z_{1}+z_{2}, z_{1} z_{2}$, and z_{2}^{-1}. Verify that $z_{1}+z_{2}$ represents vector addition in \mathbb{R}^{2}.
(b) Example 2: Pick a point z on the unit circle in the first quadrant of the complex plane \mathbb{C}. Where should $\frac{1}{z}$ be? Use the discussion in this example to interpret $\frac{1}{z}$ for values z inside and outside the unit circle.
(c) Example 3: Let $w=1$. Draw the $n^{\text {th }}$ roots of w for $n=1,2,3,4,5,6$. How do your diagrams change if $w \neq 1$?
(d) Example 4: Verify that the four values we obtain in modulus-argument form for $k=0,1,2,3$ indeed correspond to the listed points $\pm(1 \pm i)$ and graph these on the circle of radius $\sqrt{2}$, as we did in class.
