MAS205 Complex Variables 2006-2007

Calculus I and II revision class

Exercise 1. Describe graphically the set of points $(x, y) \in \mathbb{R}^{2}$ which satisfy the inequality $x^{2}+y^{2} \leq 3+2 x$.

Exercise 2. Evaluate $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}$.
Exercise 3. Which of the following series converges?
(a) $\sum_{n=1}^{\infty} \frac{3}{2 n-1}$
(b) $\sum_{n=0}^{\infty} \frac{n^{2}+2}{7-n^{2}}$
(c) $\quad \sum_{n=1}^{\infty} \frac{n}{2^{n}}$

Exercise 4. Find the points $x \in \mathbb{R}$ at which the function $f(x)=\frac{\sin x}{1+\cos x}$ is differentiable, and calculate its derivative at these points.

Exercise 5. Find thre first three terms of the Taylor series of $f(x)=\cos x$ about the point $\pi / 3$.

Exercise 6. Let f and g be functions from \mathbb{R}^{2} to \mathbb{R} which vanish at the origin $(0,0)$, and, elsewhere, are given by

$$
f(x, y)=\frac{x^{2}-y^{2}}{(x+y)^{2}}, \quad g(x, y)=\frac{x y^{2}}{x^{2}+y^{2}} .
$$

Determine whether f and g are joint continuous at (0,0).
Exercise 7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=e^{x} \cos (x+y)$. Find $\frac{\partial}{\partial x} f$ and $\frac{\partial}{\partial y} f$.

