Main Examination period 2023 - January - Semester A

MTH6102: Bayesian Statistical Methods

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of $\mathbf{4}$ hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: J. Griffin, D. Stark

Question 1 [24 marks].

Suppose that we have data $y=\left(y_{1}, \ldots, y_{n}\right)$. Each data-point is assumed to be generated by a distribution with the following probability density function:

$$
p\left(y_{i} \mid \psi\right)=2 \psi y_{i} \exp \left(-\psi y_{i}^{2}\right), y_{i} \geq 0, i=1, \ldots, n .
$$

The unknown parameter is ψ, with $\psi>0$.
Write down the likelihood for ψ given y. Find an expression for the maximum likelihood estimate (MLE) $\hat{\psi}$.

A $\operatorname{Gamma}(\alpha, \beta)$ distribution is chosen as the prior distribution for ψ. Derive the resulting posterior distribution for ψ given y.
Show that the posterior mean for ψ is always in between the prior mean and the MLE for this example.
The data are $y=(2,6,5,4, C+1)$, where C is the last digit of your ID number, with $n=5$. The prior distribution is $\operatorname{Gamma}(2,2)$.
(.) What is the MLE $\hat{\psi}$?

What is the posterior distribution for ψ ? Based on this posterior distribution, calculate a point estimate for ψ.

As the prior distribution becomes less informative, what value does the posterior mean for μ approach? As the prior distribution becomes more informative, what value does the posterior mean for μ approach?
Suppose that we take $\mu_{0}=0$, and we want the prior probability $P(|\mu| \leq A+20)$ to be 0.9 , where A is the third-to-last digit of your ID number. What value for σ_{0} should we choose?

Let the sample mean be $B+1$, where B is the second-to-last digit of your ID number, and the sample size be $n=40$. Use the prior distribution found in part (b).
(c) What is the posterior distribution for $\mu, p(\mu \mid y)$? What is the posterior median for μ ?

Let x be a future data-point from the same $N\left(\mu, \sigma^{2}\right)$ distribution. Find the posterior predictive mean and variance of x.

Solution
Q1) The likelihood function, $\rho(y / \psi)$, for ψ given $y=\left(y_{1}, \ldots, y_{n}\right)$ is the joint density of y_{1} which by

$$
\begin{aligned}
& \text { independence rs } \\
& \rho(y \mid \psi)=\rho\left(y_{1}, \cdot, y_{n} \mid \psi\right)=\prod_{i=1}^{n} \rho\left(y_{i} \mid \psi\right) \\
& =\prod_{i=1}^{n} 2 \psi y_{i} \exp \left(-\psi y_{i}^{2}\right) \\
& =2^{n} \psi^{n}\left(\prod_{i=1}^{n} y_{i}\right) \exp \left(-\psi \sum_{i=1}^{n} y_{c}^{2}\right) .
\end{aligned}
$$

(2marks)

The log likelihood is

$$
\begin{aligned}
& l(\psi)=\log p(y(\psi) \\
&=n \log (\partial)+n \log (\psi)+\sum_{i=1}^{n} \log \left(y_{i}\right)-\psi \sum_{i=1}^{n} y_{c}{ }^{2} \\
& \quad \psi>0 .
\end{aligned}
$$

To find the MLE, we tate the derivative of $e(\psi)$ with respect to ψ to find

$$
\frac{d}{d \psi} e(\psi)=\frac{n}{\psi}-\sum_{i=1}^{n} y_{c}{ }^{2}
$$

The equation $\frac{d}{d \psi} e(\psi)=0$ yields

$$
\frac{n}{\psi}-\sum_{i=1}^{n} y_{i}^{2}=0 \Rightarrow \dot{\psi}=\frac{n}{\sum_{i=1}^{n} y_{i}{ }^{2}}
$$

ψ is a global maximum since

$$
\frac{d^{2}}{d \psi^{2}} e(\psi)=\frac{-n}{\psi^{2}}<0 \quad \forall \psi>0
$$

So $\psi^{n}=n / \sum_{i=1}^{n} y_{i}{ }^{a}$ is the $M L \in$ for ψ.
(b) $\psi \sim$ Gomnnce (a, b) with pdf

$$
p(\psi)=\frac{e^{a}}{F(a)} \psi^{a-1} \exp (-b \psi)
$$

The posterior $\rho(\psi \mid y)$, is
$\rho(\psi \mid y) \propto \rho(\psi) \times \rho(y \mid \psi)$

$$
\begin{aligned}
& \alpha \psi^{\alpha-1} \exp (-b \psi) \\
& \psi^{n} \times \exp \left(-\psi \sum_{i=1}^{n} y_{i} \partial^{a}\right) \\
&= \psi^{a+n-1} \exp \left(-\psi\left(b+\sum_{i=1}^{n} y_{i}{ }^{2}\right)\right)
\end{aligned}
$$

Sur, the posterior $\rho d f$ is proportional to a Comma density with postenor parameters $a+n$ and $b+\sum_{i=1}^{n} y_{i}{ }^{2}$
so $p(\psi \mid y) \sim \operatorname{Gomma}(a+n, b+s)$

$$
S=\sum_{i=1}^{n} y_{c}{ }^{a}
$$

(c) The posterior mean, ψ^{n} B,

$$
\text { is } \begin{aligned}
\dot{\psi}_{B} & =\frac{a+n}{b+S}=\frac{a}{b+s}+\frac{n}{b+S} \\
& =\frac{a}{b+S} \cdot \frac{b}{b}+\frac{n}{b+s} \cdot \frac{s}{s} \\
& =\frac{b}{b+s} \frac{a}{b}+\frac{s}{b+s} \frac{n}{s} \\
& =w \frac{a}{b}+(1-w) \frac{n}{s} \text { (where mean } \\
W & =\frac{b}{b+s} \quad 1 \quad 0 \leq w \leq 1
\end{aligned}
$$

So the posterior mean is in between the prov mean and the MLE.

$$
\begin{aligned}
& \text { d) Frost, } \begin{aligned}
y & =(2,6,5,4(n+1) \\
S=\sum^{n} y_{c}^{2} & =2^{2}+0^{2}+5^{2}+4^{2}+(c+1)^{2} \\
& =81+(c+1)^{2}
\end{aligned}
\end{aligned}
$$

so the MLE $\hat{\psi}$ is

$$
\psi^{\eta}=\frac{n}{\sum_{i=1}^{n} y_{c}{ }^{a}}=\frac{5}{81+(c+1)^{2}}
$$

(ii) The posterior parameters of the Gamma pouterion density are

$$
\begin{aligned}
& a+n=2+5=7 \\
& 8+\sum_{i=1}^{n} y_{i}^{2}=0+81+(c+1)^{2} \\
&=83+(c+1)^{2} .
\end{aligned}
$$

A point estimate for ψ is the posterior mean

$$
\hat{\psi}_{B}=\frac{a+n}{b+n y_{i}{ }^{2}}=\frac{7}{83+(C+1)^{2}}
$$

$Q 2$
(a) As the pnor dutribution becomes less in formative (large σ_{0}) the posterior mean approaches the MLE \bar{y}. On the other hand, os the poor duturbution becomes more in formative (δ mall 00), the posterior mean approaches prior mean $\frac{\mu}{}$.
(b) $i \sim N\left(0, \sigma_{0}{ }^{2}\right)$. We want to find $\sigma_{0}>0$ such that $p(|\mu| \leqslant A+20)=0.9$

$$
\begin{aligned}
& \Leftrightarrow P(-(A+20) \leq \mu \leq A+20)=0.9 \\
& \Leftrightarrow P\left(-\frac{(A+20)}{\sigma_{0}} \leq \frac{\mu}{\sigma_{0}} \leq \frac{A+20}{\sigma_{0}}\right)=0.9 \quad \frac{N}{\sigma_{0}} \sim N(0,1)
\end{aligned}
$$

so

$$
\begin{aligned}
& P\left(\frac{N}{\sigma_{0}} \leqslant-\left(\frac{A+20}{\sigma 0}\right)\right)=0.05 \\
& =P\left(\frac{N}{\sigma_{0}} \geqslant \frac{A+20}{\sigma_{0}}\right)=0.05
\end{aligned}
$$

Thus, $p\left(\frac{N}{\sigma 0} \leq \frac{A+20}{\sigma 0}\right)=0.95$

$$
\begin{aligned}
& \text { So } \varphi\left(\frac{A+20}{\delta 0}\right)=0.95, \operatorname{Piscdf} \\
& \text { of } N(0,1) \\
& \Rightarrow \frac{A+20}{50}=\varphi^{-1}(0.95)=1.64 \\
& \Rightarrow A+20=(1.64) \sigma_{0} \\
& \Rightarrow \sigma_{0}=\frac{A+20}{1.64}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \bar{y}=B+1 \\
& n=40 \\
& \sigma_{0}=\frac{A+20}{1.64} \\
& \beta_{0}=0
\end{aligned}
$$

use the formula to find μ_{1} and $\sigma_{1}{ }^{2}$ For the normal the pastenor median is equal to the posterior mean pi.
(d) Let x be a new data point from $N\left(p, \sigma^{2}\right)$. By the law of iterated expectation, the predictive mean of x is

$$
\mathbb{E}_{E}(\mathbb{E}(x \mid y / \mu))=\mathbb{E}(\mathbb{E}(x / \mu))
$$

since $x \sim \underbrace{N\left(\mu, \sigma^{\partial}\right)}$ then $\mathbb{I} \underline{(x / \mu)}=\underline{\mu}\left(\mu \sim N / \mu_{0}, \delta 0^{2}\right)$ so $\operatorname{IE}(\operatorname{IE}(X / \mu))=\operatorname{IE} / \mu)=\mu_{0}$.

$$
\text { the mean of } x \text {. }
$$

By the low of total variance,

$$
\begin{aligned}
& \text { By the low of total variance, } \\
& \mathbb{I E}(\operatorname{var}(x \mid x, \mu))+\operatorname{Vav}(\mathbb{E}(x \mid y,(\mu)) \\
& \mathbb{E}(\operatorname{var}(x \mid y, \mu))=\mathbb{E}(\operatorname{Vor}(x \mid \mu))
\end{aligned}
$$

But $x \sim N\left(\mu, \sigma^{2}\right)$ so $\operatorname{vov}(x \mid \mu)=\sigma^{2}$
so $\quad \mathbb{E}(\operatorname{vav}(x \mid \mu))=\pi=\left(\sigma^{2}\right)=\sigma^{2}$

- $\operatorname{Var}(\operatorname{IE}(x \mid x, \mu))=\operatorname{Vav}(\operatorname{EE}(x \mid \mu))=\operatorname{Vov}(\mu)=\delta_{0}{ }^{2}$

The predictive variance of x is

$$
\sigma^{\partial}+\sigma_{0}^{2}
$$

[26 marks].

dataset $y=\left(y_{1}, \ldots, y_{n}\right)$ is a sample from a Poisson distribution with parameter λ. A $\operatorname{Gamma}(\alpha, \beta)$ prior distribution is assigned to λ. Apart from part (c), the answers do not need any numerical calculations. In the following R code, the data y is denoted by y in the code, and alpha and beta are the prior parameters.
alpha = 3
beta $=3$
$\mathrm{a}=\operatorname{sum}(\mathrm{y})+\mathrm{alpha}$
b = length $(y)+$ beta
pgamma(2, shape=a, rate=b)
qgamma(c(0.5, 0.025, 0.975), shape=a, rate=b)
(a) In statistical terms, what will the last line of code output?
(b) What will the line which starts with pgamma output?
(c) Let B and C be the second-to-last and last digits of your ID number, respectively. Take the sample size $n=B+15$, and $\sum_{i=1}^{n} y_{i}=C+30$. What are the posterior mean and standard deviation for λ ?

The R code below follows on from the code above.
$\sqrt{=}$ rgamma $(5000$, shape $=a$, rate $=b)$
$\mathrm{W}=\operatorname{rpois}($ length (v), lambda $=\mathrm{v})$
$\operatorname{mean}(\mathrm{w}==0)$
(d) When this code has run, what will v contain? What winn werntain?

What lin (in statisticat terms)?
(f) State one advantage of using a prior distribution which is conjugate to the likelihood.
(g) Suppose that we assumed some other prior distribution instead of a gamma distribution. What method could we use to make inferences based on the resulting posterior distribution for λ ?

The observed data is $y=\left(\nu, \ldots, y_{n}\right)$, a sample from a geometric distribution with parameter q. Thepristribution for q is uniform on the interval [0,1]. Suppose that $y_{1}=\cdots=y_{n}=0$.
Take $n=10+A$, where A is the third-to-last digit of your ID number.
(a) What is the normalized posterior probability density function for q ?

Suppose now that we want to compare two models. Model M_{1} assumes that the data follow a geometric distribution with q known to be $q_{0}=0.8$. Model M_{2} is the model and prior distribution described above.
(b) Find the Bayes factor B_{12} for comparing the two models.
(c) We assign prior probabilities of $1 / 2$ that each model is the true model. Find the posterior probability that M_{1} is the true model.
(d) State a drawback of using Bayes factors and posterior probabilities to compare models.

Q3 solation
$y=\left(y_{1},, y_{n}\right) \sim \operatorname{Porssun}(\lambda)$
$\lambda \sim \operatorname{Comma}(a, b)$
(a) It disploys the postenor median and a 95% equal-tail credible interval for λ.
(b) It computes $p_{n}(\lambda \leq 2 / y)$ where

$$
\lambda \sim \operatorname{Gomma}\left(3+\sum_{i=1}^{n} y_{i j} 3+n\right)
$$

(C) $n=B+15, \quad \sum_{i=1}^{n} y_{i}=C+30$

The posterion meon is

$$
\hat{\lambda}_{B}=\frac{3+\sum y_{i}}{3+n}=\frac{33+C}{18+B}
$$

The posterior standard deration is

$$
\sqrt{\frac{33+C}{(18+B)^{8}}}
$$

(d)V will contain an iid somple of alze 5000 fum the posterior for $\lambda_{1} \rho(\lambda / y)$.
(f) Bayesion uodating reduces to mod, fying the pavameters of the pnov dostribution.
(9) If we assure some other non-conjugute prior distribution, then the posterior for λ might not be a well-snown dotribution eeg gumma. In this case, we could use a MCMC method to generate a sample from $e(\lambda l y)$, and cure this sample to summarise the posterior.

Question 5^[15 marks].

The observed daty $y=\left\{y_{i j}, i=1, \ldots, n, j=1, \ldots, m_{i}\right\}$ are the average y sults in an exam for school j within count i. The following hierarchical model is con/dered reasonable:

where μ_{C}, σ_{S} and σ_{C} are unknown paraneters phich are each assigned a prior distribution.
Suppose that we have generated a sample of rze M from the joint posterior distribution $p\left(\mu_{C}, \sigma_{S}, \sigma_{C}, \mu_{1}, \ldots, \mu_{n} \mid y\right)$.
(a) Explain how to use the posterig sample to estryate the following:
(i) the posterior mean fo μ_{C};
(ii) a 95% credible in erval for σ_{S} / σ_{C};
(iii) the posterior probability that $\mu_{1}<\mu_{2}$.
(b) Explain how ty generate a sample from the posterior predictive distribution of the result for a school not in our dataset, in each of the following two cases:
(i) if the county containing the school is in our dataset;
(ii) or if the county is not in our dataset.

Appendix: common distributions

For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution	Probability mass function	Range of parameters and variates	Mean	Variance
Binomial	$\binom{n}{x} q^{x}(1-q)^{n-x}$	$\begin{aligned} & 0 \leq q \leq 1 \\ & x=0,1, \ldots, n \end{aligned}$	$n q$	$n q(1-q)$
Poisson	$\frac{\lambda^{x} e^{-\lambda}}{x!}$	$\begin{aligned} & \lambda>0 \\ & x=0,1,2, \ldots \end{aligned}$	λ	λ
Geometric	$q(1-q)^{x}$	$\begin{aligned} & 0<q \leq 1 \\ & x=0,1,2, \ldots \end{aligned}$	$\frac{(1-q)}{q}$	$\frac{(1-q)}{q^{2}}$
Negative binomial	$\binom{r+x-1}{x} q^{r}(1-q)^{x}$	$\begin{aligned} & 0<q \leq 1, r>0 \\ & x=0,1,2, \ldots \end{aligned}$	$\frac{r(1-q)}{q}$	$\frac{r(1-q)}{q^{2}}$
Continuous distributions				
Distribution	Probability density function	Range of parameters and variates	Mean	Variance
Uniform	$\frac{1}{b-a}$	$\begin{aligned} & -\infty<a<b<\infty \\ & a<x<b \end{aligned}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Normal $N\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$\begin{aligned} & -\infty<\mu<\infty, \sigma>0 \\ & -\infty<x<\infty \end{aligned}$	μ	σ^{2}

The 95th and 97.5 th percentiles of the standard $N(0,1)$ distribution are 1.64 and 1.96 , respectively.

Exponential	$\lambda e^{-\lambda x}$	$\lambda>0$ $x>0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
Gamma	$\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$	$\alpha>0, \beta>0$ $x>0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$\alpha>0, \beta>0$ $0<x<1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$

End of Appendix.

