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Question 1 [24 marks].

Suppose that we have data y = (y1, . . . ,yn). Each data-point is assumed to be generated by a
distribution with the following probability density function:

p(yi |  ) = 2 yi exp
⇣
� y2

i

⌘
, yi � 0, i = 1, . . . ,n.

The unknown parameter is  , with  > 0.

(a) Write down the likelihood for  given y. Find an expression for the maximum
likelihood estimate (MLE)  ̂. [6]

(b) A Gamma(↵,�) distribution is chosen as the prior distribution for  . Derive the
resulting posterior distribution for  given y. [6]

(c) Show that the posterior mean for  is always in between the prior mean and the MLE
for this example. [5]

(d) The data are y = (2,6,5,4,C+1), where C is the last digit of your ID number, with
n = 5. The prior distribution is Gamma(2,2).

(i) What is the MLE  ̂? [3]

(ii) What is the posterior distribution for  ? Based on this posterior distribution,
calculate a point estimate for  . [4]

Question 2 [19 marks].

The data y = (y1, . . . ,yn) is a sample from a normal distribution with unknown mean µ and
known standard deviation � = 2. The prior distribution for µ is normal N

⇣
µ0,�2

0

⌘
. The

posterior distribution is µ | y ⇠ N
⇣
µ1,�2

1

⌘
, where

µ1 =

0
BBBBB@
µ0

�2
0
+

nȳ
�2

1
CCCCCA
�0BBBBB@

1
�2

0
+

n
�2

1
CCCCCA , �

2
1 = 1

�0BBBBB@
1
�2

0
+

n
�2

1
CCCCCA , and ȳ is the sample mean.

(a) As the prior distribution becomes less informative, what value does the posterior mean
for µ approach? As the prior distribution becomes more informative, what value does
the posterior mean for µ approach? [4]

(b) Suppose that we take µ0 = 0, and we want the prior probability P(|µ|  A+20) to be 0.9,
where A is the third-to-last digit of your ID number. What value for �0 should we
choose? [4]

Let the sample mean be B+1, where B is the second-to-last digit of your ID number, and the
sample size be n = 40. Use the prior distribution found in part (b).

(c) What is the posterior distribution for µ, p(µ | y)? What is the posterior median for µ? [4]

(d) Let x be a future data-point from the same N
⇣
µ,�2

⌘
distribution. Find the posterior

predictive mean and variance of x. [7]
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Question 3 [26 marks].

The dataset y = (y1, . . . ,yn) is a sample from a Poisson distribution with parameter �. A
Gamma(↵,�) prior distribution is assigned to �. Apart from part (c), the answers do not need
any numerical calculations. In the following R code, the data y is denoted by y in the code,
and alpha and beta are the prior parameters.

alpha = 3
beta = 3
a = sum(y) + alpha
b = length(y) + beta
pgamma(2, shape=a, rate=b)
qgamma(c(0.5, 0.025, 0.975), shape=a, rate=b)

(a) In statistical terms, what will the last line of code output? [5]

(b) What will the line which starts with pgamma output? [2]

(c) Let B and C be the second-to-last and last digits of your ID number, respectively. Take
the sample size n = B+15, and

Pn
i=1 yi =C+30. What are the posterior mean and

standard deviation for �? [5]

The R code below follows on from the code above.
v = rgamma(5000, shape=a, rate=b)
w = rpois(length(v), lambda=v)
mean(w==0)

(d) When this code has run, what will v contain? What will w contain? [6]

(e) What quantity will the last line of code output (in statistical terms)? [3]

(f) State one advantage of using a prior distribution which is conjugate to the likelihood. [2]

(g) Suppose that we assumed some other prior distribution instead of a gamma distribution.
What method could we use to make inferences based on the resulting posterior
distribution for �? [3]

Question 4 [16 marks].

The observed data is y = (y1, . . . ,yn), a sample from a geometric distribution with parameter q.
The prior distribution for q is uniform on the interval [0,1]. Suppose that y1 = · · · = yn = 0.
Take n = 10+A, where A is the third-to-last digit of your ID number.

(a) What is the normalized posterior probability density function for q? [5]

Suppose now that we want to compare two models. Model M1 assumes that the data follow a
geometric distribution with q known to be q0 = 0.8. Model M2 is the model and prior
distribution described above.

(b) Find the Bayes factor B12 for comparing the two models. [6]

(c) We assign prior probabilities of 1/2 that each model is the true model. Find the
posterior probability that M1 is the true model. [3]

(d) State a drawback of using Bayes factors and posterior probabilities to compare models. [2]
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Question 5 [15 marks].

The observed data y = {yi j, i = 1, . . . ,n, j = 1, . . . ,mi} are the average results in an exam for
school j within county i. The following hierarchical model is considered reasonable:

yi j ⇠ Normal
⇣
µi,�

2
S

⌘
, j = 1, . . . ,mi

µi ⇠ Normal
⇣
µC ,�

2
C

⌘
, i = 1, . . . ,n.

where µC , �S and �C are unknown parameters which are each assigned a prior distribution.
Suppose that we have generated a sample of size M from the joint posterior distribution
p(µC ,�S ,�C ,µ1, . . . ,µn | y).

(a) Explain how to use the posterior sample to estimate the following:

(i) the posterior mean for µC;

(ii) a 95% credible interval for �S /�C;

(iii) the posterior probability that µ1 < µ2. [7]

(b) Explain how to generate a sample from the posterior predictive distribution of the result
for a school not in our dataset, in each of the following two cases:

(i) if the county containing the school is in our dataset;

(ii) or if the county is not in our dataset. [8]

End of Paper – An appendix of 1 page follows.
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Appendix: common distributions

For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution Probability
mass function

Range of parameters
and variates

Mean Variance

Binomial
 
n
x

!
qx(1�q)n�x 0  q  1

x = 0,1, . . . ,n nq nq(1�q)

Poisson
�xe��

x!
� > 0
x = 0,1,2, . . . � �

Geometric q(1�q)x 0 < q  1
x = 0,1,2, . . .

(1�q)
q

(1�q)
q2

Negative
binomial

 
r+ x�1

x

!
qr(1�q)x 0 < q  1, r > 0

x = 0,1,2, . . .
r(1�q)

q
r(1�q)

q2

Continuous distributions

Distribution Probability
density function

Range of parameters
and variates

Mean Variance

Uniform
1

b�a
�1 < a < b <1
a < x < b

a+b
2

(b�a)2

12

Normal N
⇣
µ,�2

⌘ 1p
2⇡�2

exp
 
� (x�µ)2

2�2

!
�1 < µ <1,� > 0
�1 < x <1 µ �2

The 95th and 97.5th percentiles of the standard N(0,1) distribution are 1.64 and 1.96, respectively.

Exponential �e��x � > 0
x > 0

1
�

1
�2

Gamma
�↵x↵�1e��x

�(↵)
↵ > 0,� > 0
x > 0

↵

�

↵

�2

Beta
�(↵+�)
�(↵)�(�)

x↵�1(1� x)��1 ↵ > 0,� > 0
0 < x < 1

↵

↵+�

↵�

(↵+�)2(↵+�+1)

End of Appendix.
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