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You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one
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In completing this assessment:
¢ You may use books and notes.
e You may use calculators and computers, but you must show your working for any
calculations you do.
e You may use the Internet as a resource, but not to ask for the solution to an exam
question or to copy any solution you find.
e You must not seek or obtain help from anyone else.

When you have finished:
e scan your work, convert it to a single PDF file, and submit this file using the tool below
the link to the exam;
e ¢-mail a copy to maths @ gmul.ac.uk with your student number and the module code in
the subject line;
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Question 1 [24 marks].
Suppose that we have data y = (yy,...,y,). Each data-point is assumed to be generated by a
distribution with the following probability density function:

pOily) = 2¢y,~exp(—tﬁyiz), yvi20,i=1,...,n.
The unknown parameter is ¢, with s > 0.

%7\’ rite down the likelihood for ¢ given y. Find an expression for the maximum

likelihood estimate (MLE) 1. [6]
/ A Gamma(a, ) distribution is chosen as the prior distribution for ¢. Derive the
resulting posterior distribution for ¢ given y. [6]

/ Show that the posterior mean for ¢ is always in between the prior mean and the MLE
for this example.

%F he data are y = (2,6,5,4,C + 1), where C is the last digit of your ID number, with
n = 5. The prior distribution is Gamma(2,2).

¥ What is the MLE /?

[
/ﬂ What is the posterior distribution for ¢? Based on this posterior distribution,

calculate a point estimate for .

2 [19 marks].
datay = (y1,...,yn) 1s a sample from a normal distribution with unknown mean u and
known standard deviation o~ = 2. The prior distribution for u is normal N (,uo, 0'8). The

posterior distributionis u |y ~ N (,u1 , 0'%), where

ny 1 n |

;, m:(’u—g+—2] (—2+—2],o%:l/(—2+%],andjzisthesamplemean.
(o (oa 0y o o g

/ As the prior distribution becomes less informative, what value does the posterior mean
for p approach? As the prior distribution becomes more informative, what value does
the posterior mean for u approach? 9.. (4]

/ Suppose that we take up = 0, and we want the prior probability P(|u| < A +20) to be 0.9,

where A is the third-to-last digit of your ID number. What value for ¢ should we

choose? (4]

Let the sample mean be B+ 1, where B is the second-to-last digit of your ID number, and the
sample size be n = 40. Use the prior distribution found in part (b).

/’W hat is the posterior distribution for u, p(u | y)? What is the posterior median for u? (4]

Let x be a future data-point from the same N (,u,0'2) distribution. Find the posterior
predictive mean and variance of x. [7]
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[26 marks].
ataset y = (y1,...,y,) is a sample from a Poisson distribution with parameter 4. A
Gamma(a, ) prior distribution is assigned to A. Apart from part (c), the answers do not need
any numerical calculations. In the following R code, the data y is denoted by y in the code,
and alpha and beta are the prior parameters.

alpha = 3

beta = 3

a = sum(y) + alpha

b = length(y) + beta

pgamma (2, shape=a, rate=b)

ggamma(c(0.5, 0.025, 0.975), shape=a, rate=b)

(a) In statistical terms, what will the last line of code output?
(b) What will the line which starts with pgamma output?

(c) Let B and C be the second-to-last and last digits of your ID number, respectively. Take
the sample size n = B+ 15, and 3., y; = C +30. What are the posterior mean and
———

standard deviation for A?

-—

The R ¢ below follow;)'n from the code above.

érgamma@@@@, shape=a, rate=b)\
w = rpois(length(v), lambda=v)
mean (w==0)

(d) When this code has run, what will v contain? W
—

- - = arAVA VA WAt EE I
Lttt bl ta —— =S —coae-OttPt

SEtrtreat TTis)?

Y ol —

(f) State one advantage of using a prior distribution which is conjugate to the likelihood.

(&) Suppose that we assumed some other prior distribution instead of a gamma distribution.
at method could we use to make inferences based on the resulting posterior
distribution for A?

Question 4 [16 marks].
The observed datais y = =~ ,Yn), @ sample from a geometric distribution with parameter q.
-priecdistribatron for ¢ is uniform on the interval [0, 1]. Suppose that y; =--- =y, =0.

Take n = 10+ A, where A is the third-to-last digit of your ID number.

S
e .

(a) What is the normalized posterior probability density function for g?

Suppose now that we want to compare two models. Model M| assumes that the data follow a
geometric distribution with ¢ known to be gg = 0.8. Model M; is the model and prior
distribution described above.

(b) Find the Bayes factor By, for comparing the two models.

(c) We assign prior probabilities of 1/2 that each model is the true model. Find the
posterior probability that M is the true model.

(d) State a drawback of using Bayes factors and posterior probabilities to compare models.
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where uc, os and o ¢ are unknown pardweters
Suppose that we have generated a sample o

p(:uC’O-S7O-C5,uls-"7l‘ll’l |)’)

ich are each assigned a prior distribution.
ze M from the joint posterior distribution

(a) Explain how to use the posteripf sample to estiwate the following:

(1) the posterior mean fofuc;
(i1) a 95% credible ipferval for os /o ¢;
(111) the posterior grobability that p; < uo.

(b) Explain how tg'generate a sample from the posterior predictive distribison of the result
for a schooliot in our dataset, in each of the following two cases:

(1) if ghe county containing the school is in our dataset;

(i)

r if the county is not in our dataset. [8]

End of Paper — An appendix of 1 page follows.
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Appendix: common distributions

For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution Probability Range of parameters = Mean Variance
mass function and variates
o Y o nex 0<¢g<1 3
Binomial (x)q (1-¢9) x=0.1....n nq nqg(l—q)
: e 1>0
Poisson T x=0.1.2.... A A
, 0<g<l (1-9) (1-¢g)
— 'x ——
Geometric q(1—-q) x=0.1.2, 7 7
Negative r+x—1 (1= gy 0<g<1,r>0 r(1—gq) r(l1-gq)
binomial A x=0,1,2,... q 7
Continuous distributions \
Distribution Probability Range of parameters = Mean Variance
density function and variates
Unif 1 —o<a<b< o a+b (b—a)?
niform - d<x<b > B
1 (x—,u)2 —0 < pu<0o,0>0
2 _ , 2
Normal N(,u,O' ) Noyom: ex ( 752 Lo < x < 00 u o

The 95th and 97.5th percentiles of the standard N(0, 1) distribution are 1.64 and 1.96, respectively.

A>0 1 1
: —-Ax - o
Exponential Ade >0 ) Tz
@ a—1 ,—Bx
Gamma ,Bx—e @>0,5>0 d @
I'(@) x>0 B B
r

Beta (Q+ﬁ) xa_l(l_x)ﬁ_l a’>0,ﬁ>0 a CYIB

['a)I'(B) 0<x<l a+p (@+p)*(a+B+1)
End of Appendix.
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