

Main Examination period 2023 – January – Semester A MTH6102: Bayesian Statistical Methods

Duration: 2 hours

The exam is intended to be completed within **2 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: J. Griffin, D. Stark

Question 1 [24 marks].

Suppose that we have data $y = (y_1, ..., y_n)$. Each data-point is assumed to be generated by a distribution with the following probability density function:

$$p(y_i | \psi) = 2\psi y_i \exp(-\psi y_i^2), y_i \ge 0, i = 1, ..., n.$$

The unknown parameter is ψ , with $\psi > 0$.

Write down the likelihood for ψ given y. Find an expression for the maximum likelihood estimate (MLE) $\hat{\psi}$.

A Gamma(α,β) distribution is chosen as the prior distribution for ψ . Derive the resulting posterior distribution for ψ given y.

Show that the posterior mean for ψ is always in between the prior mean and the MLE for this example.

The data are y = (2, 6, 5, 4, C + 1), where C is the last digit of your ID number, with n = 5. The prior distribution is Gamma(2, 2).

(i) What is the MLE $\hat{\psi}$?

(f) What is the posterior distribution for ψ ? Based on this posterior distribution, calculate a point estimate for ψ .

Question 2 [19 marks].

The data $y = (y_1, ..., y_n)$ is a sample from a normal distribution with unknown mean μ and known standard deviation $\sigma = 2$. The prior distribution for μ is normal $N(\mu_0, \sigma_0^2)$. The posterior distribution is $\mu | y \sim N(\mu_1, \sigma_1^2)$, where

As the prior distribution becomes less informative, what value does the posterior mean for μ approach? As the prior distribution becomes more informative, what value does the posterior mean for μ approach?

Suppose that we take $\mu_0 = 0$, and we want the prior probability $P(|\mu| \le A + 20)$ to be 0.9, where *A* is the third-to-last digit of your ID number. What value for σ_0 should we choose?

Let the sample mean be B + 1, where B is the second-to-last digit of your ID number, and the sample size be n = 40. Use the prior distribution found in part (b).

(c) What is the posterior distribution for μ, p(μ | y)? What is the posterior median for μ? [4]
 (d) Let x be a future data-point from the same N(μ, σ²) distribution. Find the posterior predictive mean and variance of x. [7]

© Queen Mary University of London (2023)

Continue to next page

[4]

[4]

[6]

[6]

[5]

Solution Q1) The likelihood function, plyly), for y given y=(y1, yn) is the joint density of y, which by independenceis $p(y|\psi) = p(y_1, ..., y_n|\psi) = \prod p(y_i|\psi)$ $= \Pi a \gamma y: exp(-\gamma y:a)$ (2 morts) $= \partial^n \psi^n \left(\prod_{i=1}^n y_i \right) \exp \left(- \psi \sum_{i=1}^n y_i^2 \right) - \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum_{i=1}^n y_i^2 \right) = \frac{1}{2} \sum_{i=1}^n \psi^n \left(- \psi \sum$ The log likelihood is $e(\psi) = \log p(y|\psi)$ $= n \log(\theta) + n \log(\eta) + \frac{1}{2} \log(y_c) - \frac{1}{2} \frac{1}{2} y_c^{2}$ $\Psi > 0.$ To find the MLE, we take the derivative of $e(\psi)$ with respect to ψ to find $d e(\psi) = \frac{n}{\psi} - \frac{\sum y}{\sum y} \frac{\partial y}{\partial \psi} \int_{x}^{y} \frac{\partial y}{\partial \psi} \int_{x}^{y} \frac{\partial y}{\partial \psi} \int_{z=1}^{y} \frac{\partial y}{\partial \psi} \int_{x}^{y} \frac{\partial y}{\partial \psi} \int_{z=1}^{y} \frac{\partial y}{\partial \psi} \int_{z=1}^{z} \frac{\partial y}{\partial \psi} \int_{z=1}^{$

yrelds The equation $\frac{d}{dy} e(y) = 0$ $\frac{N}{\Psi} - \frac{1}{2} \frac{y_i^2}{z_{i=1}} = 0 \implies \psi = \frac{N}{\frac{y_i^2}{2}}$ V is a global moximum since $\frac{d^2}{d\psi^2} e(\psi) = -\frac{v}{\psi^2} < 0 \quad \forall \forall \forall ? 0.$ So $\psi = n/\frac{2}{2}y_{e}$ is the MLE for ψ . by funce (a, b) with pdf $p(\psi) = \frac{B^{\alpha}}{F(\alpha)} \psi^{\alpha} exp(-b\psi)$

The posterior (p(yly), is $p(\psi|y) \propto p(\psi|x p(y|\psi))$ $\alpha \psi^{\alpha-1} exp(-b\psi)$ $\gamma^{n} \chi exp\left(-\gamma \tilde{Z} y d\right)$ $= \psi^{\alpha+n-1} e_{xp} \left(-\psi \left(b + \frac{y}{2}y \right) \right)$ Suffre posterior pdf 15 proportional to a Gamma density with postenor powometers d'an ond B+ Zyua

so p(Y/y)~ Gamma (atn, Bts) S = ZggThe posterior mean, YB, 15 d YB = d+N = d + M B+S B+S B+S $= \frac{a}{\theta + S} \cdot \frac{b}{\theta} + \frac{m}{\theta + S} \cdot \frac{S}{S}$ $= \frac{B}{B+S} \frac{Q}{B} + \frac{S}{B+S} \frac{M}{S}$ $= W \stackrel{Q}{\Rightarrow} f(1-w) \stackrel{M}{s} where$ BIS 102WE1 Wz

So the posterior mean is in between the proviment and Ehe M2G. d) First, y = (9,6,5,4, C+1)n = 5 $S = 2 g c^{2} = 2 f 6 f^{2} + 4 f (Cfr)^{2}$ $= 81 + (C+1)^{2}$

so the MIG VIS

(ii) The posterior porumeters of the Gomma posterior density are

Q+N=2+5=7 $B + \tilde{Z} = 0 + 81 + (C + 1)^2$ $z = 837 (C+1)^{2}$ A point estimate for y is the posterior moon $\hat{\gamma}B = \frac{Q + N}{B + 2 - 2} = \frac{7}{83 + (C + 1)^2}$

$$\frac{Q}{Q} \frac{Q}{As} \text{ the pnor distribution becomes less}
(a) As the pnor distribution becomes less
in formative (lorge σ_0) the posterior mean opproaches
the MLG \overline{g} . On the other hand, as the pnor
distribution becomes more in formative (small σ_0),
the posterior mean approaches prior mean V_0 .
(b) $V \sim N(o_1 \sigma_0^{Q})$ we want to find $\sigma_0 > 0$ such.
that $P(I|V| \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o) = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o)) \leq V \leq A + 2o = 0.9$
 $P(-(A + 2o))$$$

$$so P(\frac{1}{60} = -\frac{(\frac{1}{60})}{50}) = 0.05$$

$$= P(\frac{1}{60} \times \frac{1}{60}) = 0.05$$

$$Thus P(\frac{1}{50} \leq A + \frac{1}{50}) = 0.95 = 0.95$$

$$\Rightarrow A + 20 = (1-64) = 0.95 = 1-64$$

$$= 0.95 = 1-64$$

$$= 0.95 = 0.95 = 0.95$$

$$\Rightarrow A + 20 = (1-64) = 0.05$$

(C) [1-B+1 nz 40. $\delta_0 = \frac{4+20}{1-64}$ 40 - O use the formula to find prond d'a For the normal, the postenor medium is created to the posterior mean pr.

(d) Let x be a new data point from
$$N(p_1\sigma^{\circ})$$
.
By the low of iterated expectation, the predictive
mean of x is
 $IE(IE(X|y_1p_1)) = IE(E(\pi|p_1))$
Since $x \sim N(p_1\sigma^{\circ})$ then $IE[x_1p_1] = p$ i $p \sim N(p_0,\sigma^{\circ})$
 $\approx IE(IE(x_1p_1)) = IE(p_1) = f_{\circ}$.
By the low of total variance,
 $IE(vor(x_1y_1p_1)) + Vor(IE(x_1y_1p_1))$
 $IE(vor(x_1y_1p_1)) = IE(vor(x_1p_1))$
But $x \sim N(p_1\sigma^{\circ})$ so $vor(x_1p_1) = \sigma^{\circ}$
 $Vor(IE(x_1y_1p_1)) = IE(\sigma^{\circ}) = \sigma^{\circ}$
 $Vor(IE(x_1y_1p_1)) = IE(\sigma^{\circ}) = \sigma^{\circ}$
 $Vor(IE(x_1y_1p_1)) = Vor(IE(x_1p_1)) = Vor(p_1) = \sigma^{\circ}$
 $Vor(IE(x_1y_1p_1)) = Vor(IE(x_1p_1)) = Vor(p_1) = \sigma^{\circ}$
 $Vor(IE(x_1y_1p_1)) = Vor(IE(x_1p_1)) = Vor(p_1) = \sigma^{\circ}$

Question 5 [26 marks].

The dataset $y = (y_1, ..., y_n)$ is a sample from a Poisson distribution with parameter λ . A Gamma(α, β) prior distribution is assigned to λ . Apart from part (c), the answers do not need any numerical calculations. In the following R code, the data y is denoted by y in the code, and alpha and beta are the prior parameters.

alpha = 3
beta = 3
a = sum(y) + alpha
b = length(y) + beta
pgamma(2, shape=a, rate=b)
qgamma(c(0.5, 0.025, 0.975), shape=a, rate=b)

(a) In statistical terms, what will the last line of code output?	[5]
(b) What will the line which starts with pgamma output?	[2]
(c) Let <i>B</i> and <i>C</i> be the second-to-last and last digits of your ID number, respectively. Take the sample size $n = B + 15$ and $\sum_{i=1}^{n} y_i = C + 30$. What are the posterior mean and	
standard deviation for λ ?	[5]

The R code below follows on from the code above.

v = rgamma(5000, shape=a, rate=b)
w = rpois(length(v), lambda=v)
mean(w==0)

- (d) When this code has run, what will v contain? What will a contain? [6]
- What quantity will the last line of code output (in statistical terms)? [3]
- (f) State one advantage of using a prior distribution which is conjugate to the likelihood. [2]
- (g) Suppose that we assumed some other prior distribution instead of a gamma distribution. What method could we use to make inferences based on the resulting posterior distribution for λ ? [3]

Question 4 [16 marks].

The observed data is $y = (y_1, \dots, y_n)$, a sample from a geometric distribution with parameter q. The prior distribution for q is uniform on the interval [0, 1]. Suppose that $y_1 = \dots = y_n = 0$. Take n = 10 + A, where A is the third-to-last digit of your ID number.

(a) What is the normalized posterior probability density function for q? [5]

Suppose now that we want to compare two models. Model M_1 assumes that the data follow a geometric distribution with q known to be $q_0 = 0.8$. Model M_2 is the model and prior distribution described above.

- (b) Find the Bayes factor B_{12} for comparing the two models. [6]
- (c) We assign prior probabilities of 1/2 that each model is the true model. Find the posterior probability that M_1 is the true model.
- (d) State a drawback of using Bayes factors and posterior probabilities to compare models. [2]

© Queen Mary University of London (2023)

Continue to next page

[3]

$$\frac{Q3 \text{ Solution}}{Y=(Y_1), Y_1|_{\mathcal{V}} \text{ Poisson}(n)}$$

$$\frac{Q3 \text{ Solution}}{N \text{ Gomma (018)}}$$

$$\frac{Q3 \text{ Solution}}{N \text{ Gomma (018)}}$$

$$\frac{Q3 \text{ Solution}}{N \text{ Gomma (018)}}$$

$$\frac{Q3 \text{ Solution}}{(Q18)}$$

$$\frac{Q3 \text{ Solution}}$$

(g) (f we assure some other non-conjugate prior distribution, then the posterior for a might not be a well-xnown distribution eggumma. In this case, we call use a MCMC method to generate a sample from p(als), and use this sample to summarise the posterior.

Question 5 (1,5 marks].

The observed data $y = \{y_{ij}, i = 1, ..., n, j = 1, ..., m_i\}$ are the average results in an exam for school *j* within county *i*. The following hierarchical model is considered reasonable:

$$y_{ij} \sim \text{Normal}(\mu_i, \sigma_S^2), \ j = 1, \dots, m_i$$

 $\mu_i \quad \text{Normal}(\mu_C, \sigma_C^2), \ j = 1, \dots, n.$

where μ_C , σ_S and σ_C are unknown parameters which are each assigned a prior distribution. Suppose that we have generated a sample of size *M* from the joint posterior distribution $p(\mu_C, \sigma_S, \sigma_C, \mu_1, ..., \mu_n | y)$.

- (a) Explain how to use the posterior sample to estimate the following:
 - (i) the posterior mean for μ_C ;
 - (ii) a 95% credible interval for σ_S / σ_C ;
 - (iii) the posterior probability that $\mu_1 < \mu_2$.
- (b) Explain how to generate a sample from the posterior predictive distribution of the result for a school not in our dataset, in each of the following two cases:
 - (i) if the county containing the school is in our dataset;
 - (ii) or if the county is not in our dataset.

End of Paper – An appendix of 1 page follows.

Continue to next page

[7]

[8]

MTH6102 (2023)

Appendix: common distributions

For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution	Probability mass function	Range of parameters and variates	Mean	Variance
Binomial	$\binom{n}{x}q^x(1-q)^{n-x}$	$0 \le q \le 1$ $x = 0, 1, \dots, n$	nq	nq(1-q)
Poisson	$\frac{\lambda^{x}e^{-\lambda}}{x!}$	$\lambda > 0$ $x = 0, 1, 2, \dots$	λ	λ
Geometric	$q(1-q)^x$	$0 < q \le 1$ $x = 0, 1, 2, \dots$	$\frac{(1-q)}{q}$	$\frac{(1-q)}{q^2}$
Negative binomial	$\binom{r+x-1}{x}q^r(1-q)^x$	$0 < q \le 1, r > 0$ $x = 0, 1, 2, \dots$	$\frac{r(1-q)}{q}$	$\frac{r(1-q)}{q^2}$
Continuous distri	butions			
Distribution	Probability density function	Range of parameters and variates	Mean	Variance
Uniform	$\frac{1}{b-a}$	$-\infty < a < b < \infty$ $a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$

Normal $N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = -\infty < \mu < \infty, \sigma > 0$ $-\infty < x < \infty$ μ σ^2

The 95th and 97.5th percentiles of the standard N(0, 1) distribution are 1.64 and 1.96, respectively.

Exponential	$\lambda e^{-\lambda x}$	$\lambda > 0$ $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma	$\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$	$\begin{array}{l} \alpha > 0, \beta > 0 \\ x > 0 \end{array}$	$\frac{lpha}{eta}$	$rac{lpha}{eta^2}$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\alpha > 0, \beta > 0$ $0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

End of Appendix.

© Queen Mary University of London (2023)