
MTH6112 Actuarial Financial Engineering

Coursework Week 11

1. An analyst is using a two-state continuous-time model to study the credit

risk of zero-coupon bonds issued by different companies. The risk-neutral

transition intensity function is:

• λ̃A (s) = 0.0148 for Company A, and

• λ̃B (s) = 0.01s2 for Company B,

where s measures time in years from now. The analyst observes that the

credit spread on a 3 year zero-coupon bond just issued by Company B is twice

that on a 3-year zero-coupon bond just issued by Company A. Given that

the average recovery rate in the event of default, δ, where 0 < δ < 1, is the

same for both companies, calculate δ. What should be the relation between

the recovery rates of these two companies for there not to be arbitrage in the

market?

Remark. The credit spread on a zero-coupon bond is the difference between

the yield on the bond and the yield on a similar bond issued by the govern-

ment. I.e., for company i it is equal to Ri (t, T )− r, where r is the risk-free

interest rate and

Ri (t, T ) = − 1

T − t
logB (t, T ) .

The price of a zero-coupon bond in a two-state model was derived in the

Lecture and is equal to

B (t, T ) = e−r(T−t)

(
δ + (1− δ) e

−
T∫
t
λ̃(s)d s

)
.

Solution:

For the spot rate curve, R (t, T ), one has

R (t, T ) = − 1

T − t
logB (t, T ) .

Let Ci be the credit spread on a 3 year zero-coupon bond just issued by



company i. Then by the definition of the credit spread we have

Ci = Ri (0, 3)− r = −1

3
log

[
e−3r

(
δ + (1− δ) e

−
3∫
0

λ̃i(s)d s

)]
− r

= −1

3
log

(
δ + (1− δ) e

−
3∫
0

λ̃i(s)d s

)
.

The analyst observes that the credit spread on a bond just issued by Company

B is twice that on a bond just issued by Company A, thus

−1

3
log

(
δ + (1− δ) e

−
3∫
0

λ̃B(s)d s

)
= −2

3
log

(
δ + (1− δ) e

−
3∫
0

λ̃A(s)d s

)
. (1)

The above is an equation in one variable δ. Let us first calculate correspond-

ing integrals.

3∫
0

λ̃A (s) d s = 0.0148

3∫
0

1d s = 0.0148s
∣∣∣3
0
= 0.0444,

3∫
0

λ̃B (s) d s = 0.01

3∫
0

s2d s = 0.01
s3

3

∣∣∣3
0
= 0.09.

By multiplying (1) by −3 and then exponentiating one gets

δ + (1− δ) e−0.09 =
(
δ + (1− δ) e−0.0444

)2
.

Remark: Please bear in mind, that one needs to keep precise values in this

problem. Otherwise you will get unrealistic results.

To shorten notations let us introduce α = e−0.0444 and β = e−0.09. The

equation can be rewritten as

δ2 (1− α)2 + δ
(
2α− 2α2 + β − 1

)
+ α2 − β = 0.

Discriminant of the above is equal to

D =
(
β − α2 − (1− α)2

)2 − 4
(
α2 − β

)
(1− α)2 =

(
β − α2 + (1− α)2

)2
.

And the solution to equation is then given byδ1 = 1−β+2α2−2α+β−α2+(1−α)2

2(1−α)2
= 1

δ2 = 1−β+2α2−2α−β+α2−(1−α)2

2(1−α)2
= α2−β

(1−α)2
.



Remark: Solution δ1 = 1 should not be a surprise. This just confirms that

in the case of no default, the credit spread is zero for any company.

Plugging now corresponding numbers, we obtain

δ =
e−0.0888 − e−0.09

(1− e−0.0444)2
= 0.5818.

2. This question is covered in the Slides of this week. Please dirty your hands

and do it independently to check if you are able to calculate them.

Let ξi, i = 1, 2, . . . , n be independent random variables taking the values ±1

with probability P [ξ1 = 1] = 1/2.

We denote by Fn the σ-algebra generated by ξ1, ξ2, . . . , ξn. Further we denote

Sn =
n∑

i=1

ξj.

Finally, let τ be a random variable taking values in N, with

E [τ ] < ∞,

and τ being independent of all ξi. Compute the following conditional expec-

tations.

a) E[eξ1+ξ2−ξ3|ξ1, ξ2]
b) E[Sn|Fn−1]

c) E[S2
n − n|Fn−1]

d) E[eSn|Fn−1]

e) E[S2
n|Sn−1]

f) E[S2
τ |τ ]

Solution:

a) E[eξ1+ξ2−ξ3|ξ1, ξ2]
In this case we deal with the conditional expectation with respect to

random variables, and thus we ”know the information” about their val-

ues. Saying rigorously, all functions of ξ1, ξ2 are measurable and we can

use Property Exp.3. At the same time ξ3 is independent of ξ1, ξ2 and

we can use Property Exp.4. This leads to

E
[
eξ1+ξ2−ξ3|ξ1, ξ2

] Exp.3
= eξ2+ξ2E

[
e−ξ3|ξ1, ξ2

] Exp.4
= eξ2+ξ2E

[
e−ξ3

]
.



For the last average we have

E
[
e−ξ3

]
= e−1 · 1

2
+ e+1 · 1

2
= cosh(1),

and thus

E
[
eξ1+ξ2−ξ3|ξ1, ξ2

]
= eξ1+ξ2 cosh(1).

b) E[Sn|Fn−1]

In this case we deal with the conditional expectation with respect to a

σ-algebra. Thus we need to understand first what is measurable with re-

spect to this σ-algebra and what is independent. In simple words, which

variables this σ-algebra keeps an ”information” about. It follows from

the problem statement that this σ-algebra does keep an ”information”

about first n− 1 variables. Therefore we can write

E [Sn|Fn−1] = E [Sn−1 + ξn|Fn−1]
Exp.1
= E [Sn−1|Fn−1] + E [ξn|Fn−1]

Exp.3
= Sn−1 + E [ξn|Fn−1]

Exp.4
= Sn−1 + E [ξn] .

For the last average we have

E [ξn] = (1) · 1
2
+ (−1) · 1

2
= 0,

and thus

E [Sn|Fn−1] = Sn−1.

c) E[S2
n − n|Fn−1]

Analogously to the above, we calculate the expectation given an infor-

mation about first n− 1 variables. Thus,

E
[
S2
n − n|Fn−1

] Exp.1
= E

[
(Sn−1 + ξn)

2|Fn−1

]
− n

Exp.1
= E

[
S2
n−1|Fn−1

]
+ 2E [Sn−1ξn|Fn−1] + E

[
ξ2n|Fn−1

]
− n

Exp.3
= S2

n−1 + 2Sn−1E [ξn|Fn−1] + E
[
ξ2n|Fn−1

]
− n

Exp.4
= S2

n−1 + 2Sn−1E [ξn] + E
[
ξ2n
]
− n.

Mean value of ξn was calculated above and is equal to 0. For the second

moment we have

E
[
ξ2n
]
= 1 · 1

2
+ 1 · 1

2
= 1,



and therefore

E
[
S2
n − n|Fn−1

]
= S2

n−1 − (n− 1) .

Rremark. In the above two examples one can notice the same phenom-

ena. Indeed we have shown for two different processes, namely Xn = Sn

and Xn = S2
n − n, and σ-algebra Fn−1 the validity of following relation

E [Xn|Fn−1] = Xn−1.

d) E[eSn|Fn−1]

Analogously to the above we split the exponent into two parts: one

containing variables ξ1, ξ2, . . . , ξn−1 and another containing ξn and then

use the Properties Exp.3, Exp.4.

E
[
eSn|Fn−1

]
= E

[
eSn−1eξn|Fn−1

] Exp.3
= eSn−1E

[
eξn|Fn−1

]
Exp.4
= eSn−1E

[
eξn
]
= eSn−1 cosh(1).

e) E[S2
n|Sn−1]

In this case we need to emphasize that the conditional expectation with

respect to Sn−1 is not the same as the conditional expectation with

respect to Fn−1. Expectation of the form E [·|Sn−1] is the one which is

taken with respect to a σ-algebra that ”keeps the information” about

Sn−1 only, but not about independent variables ξ1, ξ2, . . . , ξn−1. But we

still can successfully use the same technique to obtain

E
[
S2
n|Sn−1

] Exp.1
= E

[
S2
n−1|Sn−1

]
+ 2E [Sn−1ξn|Sn−1] + E

[
ξ2n|Sn−1

]
Exp.3
= S2

n−1 + 2Sn−1E [ξn|Sn−1] + E
[
ξ2n|Sn−1

]
Exp.4
= S2

n−1 + 2Sn−1E [ξn] + E
[
ξ2n
]
= S2

n−1 + 1.

f) E[S2
τ |τ ]

This is a more complicated example. Namely we have a random number

of terms forming Sτ . Thus we start from the definition of a conditional

expectation via conditional distribution. Because τ is independent of

all ξn we can fix the value of τ to be equal n. Then the variable Sn has

some distribution. We are interested in its second moment

E
[
S2
n

]
= E

[∑
j,k

ξjξk

]
=
∑
j

E
[
ξ2j
]
+
∑
j ̸=k

E [ξjξk] = n+
∑
j ̸=k

E [ξj]E [ξk] = n.



This means that

E
[
S2
τ |τ = n

]
= n = τ,

and thus

E
[
S2
τ |τ
]
= τ.

3. This question is also covered in the Slides of Week 11. Make sure you are

able to solve it.

a) Let Wt be a standard Brownian Motion/Wiener Process and {Ft}t≥0 be

a corresponding natural filtration. Let Bt = B0 + µt + σWt be a BM

with corresponding drift and volatility. Show that Wt is a martingale.

Solution:

Wt is a martingale because of

E [Wt|Fs] = E [Wt −Ws +Ws|Fs]
Exp.1
= E [Wt −Ws|Fs] + E [Ws|Fs]

Exp.3, past
= E [Wt −Ws|Fs] +Ws

Exp.4, future
= E [Wt −Ws] +Ws = Ws.

But Bt is not a martingale unless µ is equal to zero. Indeed,

E [Bt|Fs] = E [Bt −Bs +Bs|Fs]
Exp.1
= E [Bt −Bs|Fs] + E [Bs|Fs]

Exp.3
= E [Bt −Bs|Fs]+Bs

Exp.4
= E [Bt −Bs]+Bs = µ (t− s)+Bs ̸= Bs, for µ ̸= 0.

b) Show that under the same assumption, W 2
t is a not martingale, but

W 2
t − t is.

Solution:

E
[
W 2

t |Fs

]
= E

[
(Wt −Ws +Ws)

2|Fs

]
Exp.1
= E

[
(Wt −Ws)

2|Fs

]
+ 2E [Ws (Wt −Ws)|Fs] + E

[
W 2

s |Fs

]
Exp.3
= E

[
(Wt −Ws)

2|Fs

]
+ 2WsE [Wt −Ws|Fs] +W 2

s

Exp.4
= E

[
(Wt −Ws)

2]+ 2WsE [Wt −Ws] +W 2
s = t− s+W 2

s .

At the same time if one introduces Xt to be equal W 2
t −t, then it follows

from the above

E [Xt|Fs] = E
[
W 2

t |Fs

]
− t = W 2

s − s = Xs,

and thus Xs is a martingale with respect to a filtration {Ft}t≥0.



c) Let St = eBt be a Geometric Brownian Motion starting at S0 = eB0

and having drift µ and volatility σ. Show that this process is not a

martingale in general, but is a martingale for µ = −σ2

2
.

Solution:

This follows from the below

E [St|Fs] = E
[
eµ(t−s)+σ(Wt−Ws)Ss|Fs

] Exp.3
= eµ(t−s)SsE

[
eσ(Wt−Ws)|Fs

]
Exp.4
= eµ(t−s)SsE

[
eσ(Wt−Ws)

]
= Sse

µ(t−s)+σ2

2
(t−s) = Sse

(
µ+σ2

2

)
(t−s)

.


