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16. Zero coupon bonds and their prices

Bonds are fixed income securities.

Definition 16.1 (Bond)

A bond is a contract issued by a government or a corporate in order to raise capital.
Investors who purchase a bond are promised a stream of fixed payments known as
coupons plus the total capital invested at the bond expiry.
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16. Zero coupon bonds and their prices
The following example should be known to you from the FMI.
Example. In the simplest case, when the same amount A is paid each year, the annual
interest rate is r , and the bond expires in n years, the net present value (NPV) of a bond
is

NPV = −P +
A

1 + r
+

A

(1 + r)2
+ · · ·+ A

(1 + r)n
+

P

(1 + r)n
,

In this example, the interest rate does not depend on time.

In this section, our aim is to compute the price of a zero coupon bond in the case when
both the price of the bond and the interest rate are modelled as random processes.

But first, let us recall one elementary fact (known from FMI) concerned with continuously
compounded interest rate r(t): if at tome t ≥ 0 £1 is deposited into a bank, then the

capital of this portfolio at time T > t will be £e
∫ T
t r(s)ds . Equivalently, we can say that in

order to accumulate £1 by time T , one has to deposit £e−
∫ T
t r(s)ds at time t.
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16. Zero coupon bonds and their prices

Statement of the problem

We shall consider only zero coupon bonds which simply means that there are no coupon
payments. Our model is defined as follows.

• The interest rate is r(t), t ≥ 0, compounded continuously, where r(t) is a random
process satisfying the equation

dr(t) = a(t, r)dt + σ(t, r)dWt .

We consider only one model of this kind. Namely,

dr(t) = −a(r(t)− b)dt + σdWt , (1)

where a > 0, b > 0, σ > 0 are constants. In other words, we are in the framework
of the Vasicek model with parameters a, b, σ.
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16. Zero coupon bonds and their prices

• Let B(t,T ) be the price at time t of a zero coupon maturing at time T , 0 ≤ t ≤ T .
By definition, this means that the owner of the bond is paid £1 at time T for
£B(t,T ) invested at time t. The bond can be purchased and sold at any time t,
0 ≤ t ≤ T . We assume that B(t,T ) is a random process (viewed as a function of t
while T is fixed). Moreover, suppose that

dB(t,T ) = B(t,T )(mdt + σdWt),

where m = m(t,T ), σ = σ(t,T ). Suppose that m = const, σ is the same as in (1).
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16. Zero coupon bonds and their prices

Remark. It is clear that B(T ,T ) = 1. It is also natural to expect that B(t,T ) < 1 if
t < T .
Exercise: explain these statements.

The question we are going to answer is:
Question: Given r(t), what is the risk-neutral price B̃(t,T ) of the bond?
Answer: If r(t) ≡ r , then you get ert .

The present (at t = 0) value of £1 at time t is e−
∫ t
0 r(s)ds .

If we know r(t) for all t ∈ [0,T ], then the present value of the bond is

B(t,T ) = e−
∫ T
t r(s)ds .

This answer is simple if r(t) is known. However, at time t we know r(t) but we don’t
know r(s) for s > t. How do we then find B(t,T )? r(s) is now a random process.
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16. Zero coupon bonds and their prices

The no-arbitrage price B(t,T )

Statement Suppose that the interest rate r(t) is governed by the Vasicek model with
parameters a > 0, b > 0. Then the no-arbitrage price of the bond at time t is given by

B(t,T ) = eu(τ)−v(τ)r(t),

where r(t) is the interest rate at time t, τ = T − t and

v(τ) =
1− e−aτ

a
, u(τ) = (v(τ)− τ)

(
b − σ2

2a2

)
− σ2

4a
(v(τ))2

8 / 51



17. Advanced probability theory

The material we discuss in Section 17 was partially explained in the courses Probability
and Statistics I & II.
We recall the notions of probability space, conditional probabilities, and conditional
distributions leading to an advanced definition of a conditional expectation.

In Section 18, we discuss what it means for a process to be a martingale and state a
theorem explaining the importance of martingales in Financial Mathematics.
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17.1. The probability space

We start with the notion of a probability space.

Definition 17.1

A probability space is a triple (Ω,F ,P), where:
Ω is the set of all possible outcomes of an experiment which we also call a sample space.
We often denote by ω the elements of Ω.
F is a σ-algebra of subsets of Ω also called the event space.
P : F → [0, 1] is a probability measure.
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17.1. The probability space

Recall the following definitions.
Definition. A collection of subsets of Ω is a σ-algebra F if:

1. Ω ∈ F .

2. A ∈ F ⇒ Ac = Ω \ A ∈ F .

3. A1,A2, . . . ∈ F ⇒
∞⋃
j=1

Aj ∈ F .

Definition. P is a probability measure on (Ω,F) if

1. P : F 7→ [0, 1].

2. P(Ω) = 1.

3. For any disjoint events A1,A2, . . . ∈ F one has P
(
∪∞
j=1Aj

)
=

∑∞
j=1 P(Aj).
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17.2. Random variables

Definition 17.2

Let (Ω,F ,P) be a probability space.
We say that a function ξ : Ω → R is a random variable if the set {ω : ξ(ω) ≤ a} is an
event, that is {ω : ξ(ω) ≤ a} ∈ F .
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17.2. Random variables

Definition 17.3

The function Fξ (x) defined by

Fξ (x) = P [ξ (ω) ≤ x ]

is called the cumulative distribution function of ξ.
We say that fξ (x) is the probability density function of ξ if for any interval [a, b]

P(ξ ∈ [a, b]) =

∫ b

a
fξ (x) dx .

Obviously, Fξ (x) =
∫ x
−∞ fξ (u) du.

It is also easy to see that under certain mild conditions

fξ (x) =
d

dx
Fξ (x) .
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17.2. Random variables

Definition 17.4

If a random variable ξ has a density fξ (x) and if
∞∫

−∞
|x |fξ (x) dx < ∞, then the

expectation of ξ is defined by

E [ξ] =

∞∫
−∞

xfξ (x) dx .
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17.2. Random variables

The terms average value of ξ or mean value of ξ are also used in mathematical
literature and have the same meaning as the expectation of ξ.
In the case of a discrete random variable ξ, its expectation is defined by

E [ξ] =
∑
i

xi (ω)P [ξ = xi ] ,

where xi are the values which the random variable ξ takes with positive probability and
the summation is over all such values.
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17.3. Conditional probability

In this subsection, we revise the notion of conditional probability and then we introduce
conditional distribution and conditional expectation.
These notions will play an important role in the Section 18 where we discuss martingales.

Definition 17.5 (Conditional probability)

Let (Ω,F ,P) be a probability space. Then for any two events A,B ∈ F with P [B] ̸= 0
we define conditional probability of A given B is defined via

P [A|B] = P [A ∩ B]

P [B]
.
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17.3. Conditional probability

We list without proof several well known results about conditional probabilities.

Theorem 17.1

Let (Ω,F ,P) be a probability space and E1,E2, . . . ,En being some events. Then

P

 n⋂
j=1

Ej

 = P [E1] · P [E2|E1] · P [E3|E1 ∩ E2] · . . . · P [En|E1 ∩ E2 ∩ . . . ∩ En−1] .

Definition 17.6

Let (Ω,F ,P) be a probability space. Events E1,E2, . . . ,En are said to form a partition of
the probability space if

• Events E1,E2, . . . ,En are pairwise disjoint, i.e. Ei ∩ Ej = ∅ for i ̸= j ;

• Ω = E1 ∪ E2 ∪ . . . ∪ En.
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17.3. Conditional probability

Theorem 17.2 (The total probability theorem)

Let (Ω,F ,P) be a probability space with events E1,E2, . . . ,En forming a partition. Then
for any event A ∈ F

P [A] =
n∑

j=1

P [A|Ej ]P [Ej ] .
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17.3. Conditional probability

Independence
We recall what it means for two events/random variables to be independent. Let
(Ω,F ,P) be a probability space.

Definition 17.7

Events A,B are said independent if

P [A|B] = P [A] .

Equivalently, one can say that events A and B are independent if

P [A ∩ B] = P [A] · P [B] .
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17.3. Conditional probability

Definition 17.8

Events E1,E2, . . . ,En are mutually independent if for any 1 ≤ i1 < i2 < ... < ik ≤ n the
probabilities of the events Ei1 ,Ei2 , . . . ,Eik satisfy the equation

P

 k⋂
j=1

Eij

 =
n∏

j=1

P
[
Eij

]
.

The independence of two random variables can be defined in different ways.
Here is one of the equivalent definitions.
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17.3. Conditional probability

Definition 17.9

Random variables ξ and ζ are independent if for any x , y ∈ R

Fξ,ζ (x , y) = Fξ (x)Fζ (y) , (2)

where Fξ,ζ (x , y) is the joint distribution function of the pare (ξ, ζ) and Fξ (·) and Fζ (·)
are the distribution functions of ξ and ζ respectively.

If the random variables have a joint probability density function fξ,ζ (x , y) then (2) is
equivalent to

fξ,ζ (x , y) = fξ (x) fζ (y) for all x , y ∈ R.

where fξ (·) and fζ (·) are the probability density functions of ξ and ζ respectively.
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17.3. Conditional probability

The following proposition provides us with a necessary condition for independence of
two random variables.

Proposition 17.1

If ξ, ζ are independent random variables then Cov[ξ, ζ] = 0.
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17.4. Conditional distribution
Let (Ω,F) be a probability space and A be an event, A ∈ F . Set a function
PB [·] : F → [0, 1] via

PA [B] = P [B|A] . (3)

Formula (3) defines a probability measure on (Ω,F).
We can now define the conditional distribution of any random variable conditioned on the
event A.

Definition 17.10 (Conditional cumulative distribution function)

Consider an event A with P [A] > 0.
Then the conditional cumulative distribution function of a random variable ξ given
A is defined by

FA
ξ (x) = P [ξ ≤ x |A] .

In the case of discrete random variable ξ the condition distribution of ξ given A is

pAk = P [ξ = xk |A] .
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17.4. Conditional distribution
Example.
We roll a die until we get a 6. Let Y be the total number of rolls and X the number of 1s
we get.
Let us compute the conditional distribution of X given a value Y .
Random variable Y can take positive integer values only, and thus is a discrete random
variable.
If we know that Y = n then this means that we observe n rolls of a die with first n − 1
outcomes being one of the numbers 1, 2, 3, 4, 5 and the nth being 6.
What is the corresponding conditional distribution of X?
The answer follows from the observation that we have n − 1 independent Bernoulli trials
with the probability of getting 1 equal to 1

5 , and thus

PY=n [X = k] = P [X = k |Y = n] =

(
n − 1

k

)
0.2k0.8n−1−k , where k = 0, 1, ..., n − 1.

1 to (n − 1): k 1s, (n − 1− k) 2-4s. n: 6.
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17.5. Conditional expectation
Given the conditional distribution, we can calculate other quantitative characteristics of a
random variable, such as expectation, variance, etc. with respect to a conditional
measure.
In this section we introduce the notion of a conditional expectation.

Definition 17.11

Let (Ω,F ,P) be a probability space and G being a sub-σ-algebra of F , and let ξ be an
absolutely integrable random variable.
We say that the random variable ζ is (a version of) the conditional expectation of ξ
with respect to G - and denote it by E [ξ|G] if
• CE.1 ζ is an absolutely integrable r.v.;

• CE.2 ζ is G measurable;

• CE.3 for any event G ∈ G

E [ξ1G ] = E [ζ1G ] . 25 / 51



17.5. Conditional expectation

Remark.

1. Condition CE.1 means nothing else than E [|ζ|] < ∞.

2. Condition CE.2 means that the sub-σ-algebra G contains all the information about
ζ. I.e., for any Borel set B ⊆ R we have ζ−1 (B) ∈ G.

3. Condition CE.3 is the most important one. It literally says that after restricting ξ to
any G ∈ G we obtain a random variable with the same average as ζ restricted to G
has.

4. Let (Ω,F ,P) be a probability space and ξ, ζ being two absolutely integrable random
variables. Then one can build a sub-σ-algebra Gζ that contains all sets of the form
ζ−1 (B) with B being a Borel subset of a real line. Conditional expectation in this
case can be denoted as

E [ξ|ζ] := E [ξ|Gζ ] .
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17.5. Conditional expectation

Construction of a conditional expectation
Let (Ω,F ,P) be a probability space and ξ, ζ being two absolutely integrable random
variables.
How can we build a conditional expectation E [ξ|ζ]? What is this?

Proposition 17.2

Let fξ|ζ (·) be a conditional probability distribution function of ξ given ζ. Then

E [ξ|ζ] =
∫

xfξ|ζ (x) dx .

Remark.
The right hand side is a function of ζ and therefore the left hand side is a function as well.
We can then say that E [ξ|ζ] is a r.v. that is a function of another r.v. ζ.
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17.5. Conditional expectation

Example.
In the Die Example, we can now calculate the conditional expectation of X given Y .
Conditional distribution P [X = k |Y = n] is of Bernoulli form and thus

E [X |Y = n] = 0.2 · (n − 1) .

Remembering the fact that n = Y (total number of rolls), we can write

E [X |Y ] = 0.2 (Y − 1) .
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17.5. Conditional expectation

Properties of conditional expectation
We formulate without the proof basic properties of conditional expectations that we will
use in the course.

Proposition 17.3 (Properties of conditional expectation)

Let (Ω,F ,P) be a probability space, ξ, ζ be arbitrary random variables and G,G1 be two
sub-σ-algebras of F . Then

• Exp.1 For any real numbers a, b one has E [aξ + bζ|G] = aE [ξ|G] + bE [ζ|G].
• Exp.2 E [E [ξ|G]] = E [ξ].

• Exp.3 if ζ is a r.v. measurable with respect to G, then E [ξζ|G] = ζE [ξ|G]. (Past)
• Exp.4 if ζ is a r.v. independent of G, then E [ζ|G] = E [ζ]. (Future)

• Exp.5 if G1 ⊂ G then E [ξ|G1] = E [E [ξ|G]|G1].
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17.5. Conditional expectation

The following theorem claims that the conditional expectation is indeed an optimal
estimate for a random variable ξ given ζ in terms of functions of ζ.
The proof is not provided and the theorem is not examinable.
The theorem is given here just to show how good approximation might be build for a
random variable given the information provided.
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17.5. Conditional expectation

Theorem 17.3

Let (Ω,F ,P) be a probability space, G ⊆ F be a sub-σ-algebra, and ξ and ζ be two
random variables. Then

• E [ξ|G] gives the best estimate for ξ in between all G-measurable random variables:
for any G-measurable r.v. τ

E
[
(ξ − E [ξ|F1])

2
]
≤ E

[
(ξ − τ)2

]
, E [(ξ − E [ξ|F1]) τ ] = 0.

• E [ξ|ζ] gives the best estimate for ξ in between all functions of ζ: for any function
f (·) : R → R

E
[
(ξ − E [ξ|ζ])2

]
≤ E

[
(ξ − f (ζ))2

]
, E [(ξ − E [ξ|ζ]) f (ζ)] = 0.
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17.5. Conditional expectation
Example.
Let ξi , i = 1, 2, . . . , n be independent random variables taking the values ±1 with
probability P [ξ1 = 1] = 1/2.
We denote by Fn the σ-algebra generated by ξ1, ξ2, . . . , ξn. Further we denote

Sn =
n∑

i=1

ξj .

Finally, let τ be a random variable taking values in N, with

E [τ ] < ∞,

and τ being independent of all ξi . Compute the following conditional expectations.
1. E[eξ1+ξ2−ξ3 |ξ1, ξ2]
2. E[Sn|Fn−1]

3. E[S2
n − n|Fn−1]

4. E[eSn |Fn−1]

5. E[S2
n |Sn−1]

6. E[S2
τ |τ ]
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17.5. Conditional expectation
Calculation of conditional expectations is completely based on the application of
Properties Exp.1 - 5.
1. E[eξ1+ξ2−ξ3 |ξ1, ξ2]
In this case we deal with the conditional expectation with respect to random variables,
and thus we ”know the information” about their values. Saying rigorously, all functions of
ξ1, ξ2 are measurable and we can use Property Exp.3. At the same time ξ3 is
independent of ξ1, ξ2 and we can use Property Exp.4. This leads to

E
[
eξ1+ξ2−ξ3 |ξ1, ξ2

]
Exp.3
= eξ2+ξ2E

[
e−ξ3 |ξ1, ξ2

]
Exp.4
= eξ2+ξ2E

[
e−ξ3

]
.

For the last average we have

E
[
e−ξ3

]
= e−1 · 1

2
+ e+1 · 1

2
= cosh(1),

and thus
E
[
eξ1+ξ2−ξ3 |ξ1, ξ2

]
= eξ1+ξ2 cosh(1).
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17.5. Conditional expectation
2. E[Sn|Fn−1]
In this case we deal with the conditional expectation with respect to a σ-algebra. Thus
we need to understand first what is measurable with respect to this σ-algebra and what is
independent. In simple words, which variables this σ-algebra keeps an ”information”
about. It follows from the problem statement that this σ-algebra does keep an
”information” about first n − 1 variables. Therefore we can write

E [Sn|Fn−1] = E [Sn−1 + ξn|Fn−1]
Exp.1
= E [Sn−1|Fn−1] + E [ξn|Fn−1]

Exp.3
= Sn−1 + E [ξn|Fn−1]

Exp.4
= Sn−1 + E [ξn] .

For the last average we have

E [ξn] = (1) · 1
2
+ (−1) · 1

2
= 0,

and thus
E [Sn|Fn−1] = Sn−1.
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17.5. Conditional expectation
3. E[S2

n − n|Fn−1]
Analogously to the above, we calculate the expectation given an information about first
n − 1 variables. Thus,

E
[
S2
n − n|Fn−1

] Exp.1
= E

[
(Sn−1 + ξn)

2|Fn−1

]
− n

Exp.1
= E

[
S2
n−1|Fn−1

]
+ 2E [Sn−1ξn|Fn−1] + E

[
ξ2n|Fn−1

]
− n

Exp.3
= S2

n−1 + 2Sn−1E [ξn|Fn−1] + E
[
ξ2n|Fn−1

]
− n

Exp.4
= S2

n−1 + 2Sn−1E [ξn] + E
[
ξ2n
]
− n.

Mean value of ξn was calculated above and is equal to 0. For the second moment we have

E
[
ξ2n
]
= 1 · 1

2
+ 1 · 1

2
= 1,

and therefore
E
[
S2
n − n|Fn−1

]
= S2

n−1 − (n − 1) .
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17.5. Conditional expectation

Rremark.
In the above two examples one can notice the same phenomena.
Indeed we have shown for two different processes, namely Xn = Sn and Xn = S2

n − n, and
σ-algebra Fn−1 the validity of following relation

E [Xn|Fn−1] = Xn−1.

This shows that above two processes are martingales. (see next subsection for the
definition and discussion).
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17.5. Conditional expectation

4. E[eSn |Fn−1]
Analogously to the above we split the exponent into two parts: one containing variables
ξ1, ξ2, . . . , ξn−1 and another containing ξn and then use the Properties Exp.3, Exp.4.

E
[
eSn |Fn−1

]
= E

[
eSn−1eξn |Fn−1

]
Exp.3
= eSn−1E

[
eξn |Fn−1

]
Exp.4
= eSn−1E

[
eξn

]
= eSn−1 cosh(1).
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17.5. Conditional expectation

5. E[S2
n |Sn−1]

In this case we need to emphasize that the conditional expectation with respect to Sn−1 is
not the same as the conditional expectation with respect to Fn−1. Expectation of the
form E [·|Sn−1] is the one which is taken with respect to a σ-algebra that ”keeps the
information” about Sn−1 only, but not about independent variables ξ1, ξ2, . . . , ξn−1. But
we still can successfully use the same technique to obtain

E
[
S2
n |Sn−1

] Exp.1
= E

[
S2
n−1|Sn−1

]
+ 2E [Sn−1ξn|Sn−1] + E

[
ξ2n|Sn−1

]
Exp.3
= S2

n−1 + 2Sn−1E [ξn|Sn−1] + E
[
ξ2n|Sn−1

]
Exp.4
= S2

n−1 + 2Sn−1E [ξn] + E
[
ξ2n
]
= S2

n−1 + 1.
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17.5. Conditional expectation

6. E[S2
τ |τ ]

This is a more complicated example. Namely we have a random number of terms forming
Sτ . Thus we start from the definition of a conditional expectation via conditional
distribution. Because τ is independent of all ξn we can fix the value of τ to be equal n.
Then the variable Sn has some distribution. We are interested in its second moment

E
[
S2
n

]
= E

∑
j ,k

ξjξk

 =
∑
j

E
[
ξ2j
]
+
∑
j ̸=k

E [ξjξk ] = n +
∑
j ̸=k

E [ξj ]E [ξk ] = n.

This means that
E
[
S2
τ |τ = n

]
= n = τ,

and thus
E
[
S2
τ |τ

]
= τ.
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18. Martingales

In this section we introduce the notion of a martingale, present several standard examples
and discuss the importance of martingales in financial mathematics.

Importance of martingales for modern Financial Mathematics can’t be overstated.
In fact the whole theory of pricing and hedging of financial derivatives is formulated in
terms of martingales.
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18. Martingales

Definition 18.1 (Filtration)

A filtration of a set Ω is a collection of σ-algebras Ft , indexed by a time parameter t
(time may be either discrete or continuous), such that

• each Ft is a σ-algebra of subsets of Ω;

• for any s < t we have Fs ⊆ Ft .

Definition 18.2

A stochastic process {Xt}t≥0 (time may be either discrete or continuous) is said to be
adapted to a filtration {Ft}0≤t≤T if, for each t, the random variable Xt is Ft –
measurable.

Remark. Because of an inclusion property of the filtration, random variable Xt is Fs

measurable for all s ≥ t.
In simple words, Ft keeps an information about {Xs}s≥0 up to time t.
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18. Martingales

Definition 18.3 (Martingale)

Let (Ω,F ,P) be a probability space with filtration {Ft}t≥0 and an adapted process
{Xt}t≥0. The process is said to be a martingale if

• M.1 for any t ≥ 0 E [|Xt |] < ∞;

• M.2 for any t ≥ s E [Xt |Fs ] = Xs .
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18. Martingales

Remark.
In discrete setting one can simplify all the definitions above.
For a set of σ-algebras {Fn}n∈N to be a filtration it is enough to satisfy Fn ⊆ Fn+1.
For an adapted process to be a martingale it is enough to satisfy E [Xn|Fn−1] = Xn−1.
This is due to a tower rule Exp.5 which will then mean for any m < n

E [Xn|Fm] = E [E [E [E [Xn|Fn−1]|Fn−2]| . . .]|Fm]

= E [E [E [Xn−1|Fn−2]| . . .]|Fm] = E [E [Xn−2| . . .]|Fm] = . . . = Xm.
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18. Martingales
Example 1.
Let Wt be a standard Brownian Motion/Wiener Process and {Ft}t≥0 be a corresponding
natural filtration.
Let Bt = B0 + µt + σWt be a BM with corresponding drift and volatility.
Then Wt is a martingale because of

E [Wt |Fs ] = E [Wt −Ws +Ws |Fs ]
Exp.1
= E [Wt −Ws |Fs ] + E [Ws |Fs ]

Exp.3, past
= E [Wt −Ws |Fs ] +Ws

Exp.4, future
= E [Wt −Ws ] +Ws = Ws .

But Bt is not a martingale unless µ is equal to zero. Indeed,

E [Bt |Fs ] = E [Bt − Bs + Bs |Fs ]
Exp.1
= E [Bt − Bs |Fs ] + E [Bs |Fs ]

Exp.3
= E [Bt − Bs |Fs ] + Bs

Exp.4
= E [Bt − Bs ] + Bs = µ (t − s) + Bs ̸= Bs , for µ ̸= 0.
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18. Martingales
Example 2.
Under the same assumption we show that W 2

t is a not martingale.

E
[
W 2

t |Fs

]
= E

[
(Wt −Ws +Ws)

2|Fs

]
Exp.1
= E

[
(Wt −Ws)

2|Fs

]
+ 2E [Ws (Wt −Ws)|Fs ] + E

[
W 2

s |Fs

]
Exp.3
= E

[
(Wt −Ws)

2|Fs

]
+ 2WsE [Wt −Ws |Fs ] +W 2

s

Exp.4
= E

[
(Wt −Ws)

2
]
+ 2WsE [Wt −Ws ] +W 2

s = t − s +W 2
s .

At the same time if one introduces Xt to be equal W 2
t − t, then it follows from the above

E [Xt |Fs ] = E
[
W 2

t |Fs

]
− t = W 2

s − s = Xs ,

and thus Xs is a martingale with respect to a filtration {Ft}t≥0.
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18. Martingales

Example 3.
Let St = eBt be a Geometric Brownian Motion starting at S0 = eB0 and having drift µ
and volatility σ.
This process is not a martingale in general, but is a martingale for µ = −σ2

2 . This follows
from the below

E [St |Fs ] = E
[
eµ(t−s)+σ(Wt−Ws)Ss |Fs

]
Exp.3
= eµ(t−s)SsE

[
eσ(Wt−Ws)|Fs

]
Exp.4
= eµ(t−s)SsE

[
eσ(Wt−Ws)

]
= Sse

µ(t−s)+σ2

2
(t−s) = Sse

(
µ+σ2

2

)
(t−s)

.

Remark. Let the share price St follow the risk-neutral Geometric Brownian Motion law.

I.e. St = Se(r−
1
2
σ2)t+σWt , where Wt is a standard Brownian Motion.

Then the discounted price Xt = e−rtSt is a martingale.
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18. Martingales
One of the most important properties of a martingale, that is of a great use in Financial
Mathematics, is its constant mean.

Proposition 18.1 (Constant mean of martingales)

Let (Ω,F ,P) be a probability space and Xt be a martingale with respect to a filtration
{Ft}t≥0.
Then the mean E [Xt ] is constant over time, i.e.

E [Xt ] = E [Xs ] , ∀t, s ≥ 0.

Proof.
Let t > s be two different moments of time. Then

E [Xt ]
Exp.2
= E [E [Xt |Fs ]] = E [Xs ] .

□
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18. Martingales

We finish with a very strong theorem (which we don’t prove) that shades a light on an
origin of martingales in Financial Mathematics.

Theorem 18.1

If the market admits no arbitrages,
and has a riskless asset with rate of return r (e.g., cash),
then, under any risk-neutral probability measure,
the discounted price process of any traded asset {e−rtSt}t≥0 is a martingale relative to
the natural filtration.
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A final story

Two Bagels were getting married.
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A final story

On the day of the wedding ceremony, the Groom Bagel could not find his bride.
He was very worried and tried very hard to find the Bride Bagel everywhere.
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A final story
A few minutes later, a Doughnut next to Groom Bagel could not bear any more and
complained: ’I am your bride in a wedding dress!’

When you come across something unfamiliar, don’t lose confidence.
Wish you have the ability to see through the appearance to perceive the essence.
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