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13.1. The ‘usual’ differential of a function

Suppose F (x) is a function F : R → R and F ′(x) is continuous.

Definition 13.1

dF (x) = F ′(x)dx ( here dx is “small” ).

Explanation. dF (x) is the linear part of the increment ∆F (x) = F (x +∆x)− F (x). By
the Taylor formula,

F (x + dx) = F (x) + F ′(x)dx +
1

2
F ′′(θ)dx2, (1)

where θ is (unknown) point in (x , x + dx) if dx > 0 and θ ∈ (x + dx , x) if dx < 0.

3 / 43



13.1. The ‘usual’ differential of a function

Explanation (cont). The important fact is that the difference between
∆F (x) = F (x + dx)− F (x) and dF (x) = f ′(x)dx is much smaller than dx (when dx is a
small number). More precisely,

∆F (x)− dF (x)

dx
→ 0 as dx → 0.

Indeed, it follows from (1) that
∆F (x)− dF (x) = F (x + dx)− F (x)− F ′(x)dx = 1

2F
′′(θ)dx2 and hence

∆F (x)− dF (x)

dx
=

1

2
F ′′(θ)dx → 0 as dx → 0.
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13.1. The ‘usual’ differential of a function

Example.

F (x) =
√
x . Then F (1) = 1, F ′(x) = 1

2x
− 1

2 , F ′(1) = 1
2 .

∆F (1) = F (1 + dx)− F (1) ≃ F ′(1)dx .

Since F (x + dx)− F (x) ≃ dF (x), we have

F (1 + 0.05) = F (1) + dF (1), (with dx = 0.05).

That is √
1 + 0.05 ≃ 1 + dF (1) = 1 +

0.05

2
= 1.025.
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13.2. Ito’s formula (Ito’s formula for F (Wt))

Question. What is dF (Wt)? Here F : R → R and Wt is the standard Wiener process.

Note that if g(x) is a differentiable function, then

dF (g(x)) = F ′(g(x))g ′(x)dx (2)

However

dF (W (t)) ̸= F ′(W (t))
dW (t)

dt
dt,

since the derivative dW (t)
dt does not exists.
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13.2. Ito’s formula (Ito’s formula for F (Wt))

Next, (2) can be rewritten as

dF (g(x)) = F ′(g(x))dg(x), since dg(x) = g ′(x)dx . (3)

Can we state that
dF (W (t)) = F ′(W (t))dW (t)?

The answer is NO! The correct answer is given by Ito’s lemma.
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13.2. Ito’s formula (Ito’s formula for F (Wt))

Lemma 13.1 (Ito’s lemma)

Let F (x) be a function F : R → R which has two derivatives F ′(x),F ′′(x) and F ′′(x) is
continuous.
Then

dF (Wt) = F ′(Wt)dWt +
1

2
F ′′(Wt)dt. (4)

Remark. By definition, dWt ≡ ∆Wt ≡ W (t + dt)−W (t).

The main explanation of the Ito formula is due to the following theorem.

Theorem 13.1

Suppose that F (x) has two continuous and bounded derivatives: F ′(x),F ′′(x).
Then

F (W (b))− F (W (a)) =

∫ b

a
F ′(Ws)dWs +

1

2

∫ b

a
F ′′(Ws)ds. (5)
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13.2. Ito’s formula (Ito’s formula for F (Wt))
(Note: we shall not prove this theorem but you are supposed know this statement.) Let
us now compare (5) with the following relation which you have discussed in the Calculus
courses. Namely, you know of course that

F (b)− F (a) =

∫ b

a
F ′(x)dx .

Moreover, if a function g(x), g : R 7→ R, has a continuous derivative g ′(x) then

F (g(b))−F (g(a)) =

∫ b

a
F ′(g(x))g ′(x)dx =

∫ b

a
F ′(g(x))dg(x) (since dg(x) = g ′(x)dx).

However, (5) tells us that

F (W (b))− F (W (a)) ̸=
∫ b

a
F ′(Wt)dWt .

(And this happens because W ′(t) does not exist!)
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13.2. Ito’s formula (Ito’s formula for F (Wt))

One useful corollary of the Ito formula:

Corollary 13.1

Equation (5) can be rearranged as follows:∫ b

a
F ′(Ws)dWs = F (W (b))− F (W (a))− 1

2

∫ b

a
F ′′(Ws)ds. (6)

Example 1.∫ b
a dWs = Wb −Wa. Here F (x) = x , F (Wt) = Wt , F

′(Wt) = 1. So∫ b

a
F ′(Ws)dWs =

∫ b

a
dWs = Wb −Wa.

This is a particular case of (6).
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13.2. Ito’s formula (Ito’s formula for F (Wt))

Example 2.
F (x) = x2. We have F ′(x) = 2x , F ′′(x) = 2 and so (6) now reads∫ b

a
2WsdWs = W 2

b −W 2
a − 1

2

∫ b

a
2ds = W 2

b −W 2
a − (b − a).

In particular, ∫ t

0
WsdWs =

1

2
W 2

t − 1

2
t.
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13.2. Ito’s formula (Ito’s formula for F (Wt))
IMPORTANT CONCLUSION

We know that, by definition,∫ t

0
f (Ws)dWs = lim

maxi ∆ti→0

n−1∑
i=0

f (Wi )∆Wi .

To compute this stochastic integral in terms of the ordinary integral one can do the
following:

1. Find F (x) such that F ′(x) = f (x).

2. Then
∫ t
0 f (Ws)dWs = F (Wt)− F (0)− 1

2

∫ t
0 f ′(Ws)ds.

This is what we did in the examples considered above.
Exercise. Compute the following stochastic integrals:
(a)

∫ t
0 W 3

s dWs

(b)
∫ t
0 eWsdWs .
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13.2. Ito’s formula (Ito’s formula for F (Wt))

One more explanation of Ito’s formula.
The material of this subsection is not examinable. It is here for those who want to know
more. By Taylor’s formula,

F (x + dx)− F (x) = F ′(x)dx +
1

2
F ′′(x)dx2 +

1

3!
F (3)(θ)dx3 (7)

As usual, θ is not known but this does not matter since we suppose that F (3)(x) = F ′′′(x)
is bounded: | F (3)(x) |< Constant. We can use (7) (taking into account that
W (t + dt) = W (t) + dW (t)) to obtain

F (Wt + dWt)− F (Wt) = F ′(Wt)dWt +
1

2
F ′′(Wt)dW

2
t +

1

3!
F (3)(θ)(dWt)

3. (8)

Note that E(dW 2
t ) = E((Wt+dt −Wt)

2) = dt (by the definition of the Wiener process).
Note also that E(| dWt |3) = c(dt)3/2, where c is a constant.
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13.2. Ito’s formula (Ito’s formula for F (Wt))

So Ito’s lemma (see Lemma 13.1) does the following:
It tells us that we can replace dW 2

t in (8) by dt (i.e. dW 2
t = dt),

and we can drop (dWt)
3 since the expectation of | dWt |3 is much smaller than dt.

dF (Wt) = F ′(Wt)dWt +
1

2
F ′′(Wt)dt. (4)
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13.2. Ito’s formula (Ito’s formula for F (t,Wt))

Let F (t, x) be a function of t and x , F : R2 → R.

Lemma 13.2 (Ito’s formula for F (t,Wt))

dF (t,Wt) =

(
∂F (t,Wt)

∂t
+

1

2

∂2F (t,Wt)

∂W 2
t

)
dt +

∂F (t,Wt)

∂Wt
dWt (9)
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13.2. Ito’s formula (Ito’s formula for F (t,Wt))

Remarks.

1. Here and throughout the rest of the module, we assume that all the derivatives we
need exist, are continuous functions, and have all the properties we may want them
to have.

2. Even though the notations we use in (9) should be easy to understand, here is an
additional explanation of their meaning:

∂F (t,Wt)

∂Wt
=

∂F (t, x)

∂x
|x=Wt ,

∂2F (t,Wt)

∂W 2
t

=
∂2F (t, x)

∂x2
|x=Wt .

Example. F (t, x) = t2 + x2. We have ∂F
∂t = 2t, ∂F

∂x = 2x , ∂2F
∂x2

= 2. So

dF (t,Wt) = (2t + 1)dt + 2WtdWt .
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13.2. Ito’s formula (The chain rule)
Suppose that Yt is a stochastic process and that

dYt = a(t,Yt)dt + σ(t,Yt)dWt , (10)

where a and σ are ”good” functions. Then

dF (t,Yt) =

(
∂F

∂t
+

1

2
σ2 ∂

2F

∂Y 2
t

+ a
∂F

∂Yt

)
dt + σ

∂F

∂Yt
dWt . (11)

Here

∂F

∂t
≡ ∂F (t,Yt)

∂t
,

∂F

∂Yt
≡ ∂F (t,Yt)

∂Yt
,

∂2F

∂Y 2
t

≡ ∂2F (t,Yt)

∂Y 2
t

.
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13.2. Ito’s formula (The chain rule)

Note that Ito’s formula for F (t,Wt) is a particular case of the Chain rule:

dF (t,Wt) =

(
∂F

∂t
+

1

2

∂2F

∂W 2
t

)
dt +

∂F

∂Wt
dWt .

dF (t,Yt) =

(
∂F

∂t
+

1

2
σ2 ∂

2F

∂Y 2
t

+ a
∂F

∂Yt

)
dt + σ

∂F

∂Yt
dWt . (11)

σ = 1, α = 0
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13.2. Ito’s formula (How to remember (11) and
similar formulae?)

1. We know Taylor’s formula up to order 2:

dF (t, x) =
∂F

∂t
dt +

∂F

∂x
dx +

1

2

∂2F

∂x2
dx2 +

∂2F

∂x∂t
dxdt +

1

2

∂2F

∂t2
dt2. (12)

Here ∂F
∂t ≡ ∂F (t,x)

∂t , ∂F
∂x ≡ ∂F (t,x)

∂x , . . .

2. Use the following formal rules when you replace x by Wt or Yt :

(a) dW 2
t = dt;

(b) dtdWt = 0, dt2 = 0. (Drop any items ’smaller’ than dt. dt is very small.)
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13.2. Ito’s formula (How to remember (11) and
similar formulae?)

Example 1.
Replace x in (12) by Wt . Then

dF (t,Wt) =
∂F

∂t
dt +

∂F

∂Wt
dWt +

1

2

∂2F

∂W 2
t

dt + 0 + 0

=

(
∂F (t,Wt)

∂t
+

1

2

∂2F (t,Wt)

∂W 2
t

)
dt +

∂F (t,Wt)

∂Wt
dWt

which is Ito’s lemma for F (t,Wt).
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13.2. Ito’s formula (How to remember (11) and
similar formulae?)
Example 2.
Replace x in (12) by Yt . Note that, according to the second rule

(dYt)
2 = a2dt2 + 2aσdtdWt + σ2dW 2

t = σ2dt.

Here we use equation (10). So

dF (t,Yt) =
∂F

∂t
dt +

∂F

∂Yt
dYt +

1

2

∂2F

∂Y 2
t

dY 2
t + 0 + 0

=
∂F

∂t
dt +

∂F

∂Yt
(adt + σdWt) +

1

2

∂2F

∂Y 2
t

σ2dt (13)

Hence the chain rule:

dF (t,Yt) =

(
∂F

∂t
+

∂F

∂Yt
a+

1

2

∂2F

∂Y 2
t

σ2

)
dt + σ

∂F

∂Yt
dWt .
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13.2. Ito’s formula (How to remember (11) and
similar formulae?)

Remark The (13) above contains two zeros. This is because

dtdYt = dt · (adt + σdWt) = 0 and dt2 = 0

So
∂2F (t,Yt)

∂t∂Yt
dtdYt = 0 and

∂2F (t,Yt)

∂t2
dt2 = 0
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13.3. Stochastic differential equations

Definition 13.2 (Stochastic differential equation (SDE))

A stochastic differential equation (SDE) is the equation of the form

dYt = a(t,Yt)dt + σ(t,Yt)dWt , (14)

where a(t,Yt), σ(t,Yt) are given (random) functions
and Yt = Y (t) is an unknown random process.

Remark. We have seen (14) before: equation (10).
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13.3. Stochastic differential equations

Definition 13.3

We say that Y (t) is a solution to (14) with initial value Y (0), if for t ≥ 0

Y (t) = Y (0) +

∫ t

0
a(s,Ys)ds +

∫ t

0
σ(s,Ys)dWs . (15)

Terminological remarks.
Y (t) solving (14) is said to be a diffusion process.
a(t,Yt) is called the drift and σ(t,Yt) is the volatility of the diffusion process.
Note that (15) is obtained from (14) by integrating both parts of (14).
If σ ≡ 0, then (14) becomes dYt = a(t,Yt)dt and is equivalent to Y ′

t = a(t,Yt)− the
ordinary differential equation (but still, Y (t) is a random process if a is a random process).
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13.3. Stochastic differential equations
Simple examples of SDEs.
Example 1. The following relation is the simplest example of a SDE

dYt = dWt , Y (0) = 0.

Then Yt = Y (0) +
∫ t
0 dWs = Wt −W0 = Wt . Thus Yt in this case is the Wiener process.

Example 2.
dYt = µdt + σdWt , Y (0) = 1,

where µ and σ are constants. Then

Y (t) = Y (0) +

∫ t

0
µds +

∫ t

0
σdWs

and we obtain
Y (t) = 1 + µt + σWt ,

which is the Brownian motion starting from 1.
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13.3. Stochastic differential equations

Exercise 1.
dYt = e−tdt + 2tdWt . State the distribution of Yt if Y (0) = −1.
Exercise 2.
dYt = e−tdt + 2tdWt . Find d(Y 2

t ).
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13.3. Stochastic differential equations (SDE for the
price of a share)
You are strongly advised to understand and be able to reproduce every step in the proofs
explained below.
Let S(t) be a random process describing the price of a share. How does the difference
between S(t) and S(t + dt) behave?
A simple model for dS(t) = S(t + dt)− S(t) is

dS(t) = S(t) · adt + S(t) · ξ(dt), (16)

where a is a parameter (usually a > 0) and ξ(dt) is a random ”noise”. The term
S(t) · adt pushes the price up, while ξ(dt) may be ≥ 0 or < 0. We choose ξ(dt) = σdWt ,
where Wt is the standard Wiener process and σ is a constant (which may be negative).
Then we obtain the following stochastic differential equation (SDE) :

dS(t) = aS(t)dt + σS(t)dWt (17)

Assuming that S(0) = S0 is given, how do we solve this SDE?
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13.3. Stochastic differential equations (SDE for the
price of a share)
The first solution to (17).

Theorem 13.2

The solution to (17) is given by

St = S0e
(a−σ2

2
)t+σWt .

Proof. Rewrite (17) as follows:

dSt
St

= adt + σdWt with S(0) = S0 (18)

Note that the left hand side of (18) resembles the differential d lnS(t) (but in fact it is
not equal to this differential as will be seen below).
So, let us compute d lnS(t) using the chain rule version of Ito’s lemma.
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13.3. Stochastic differential equations (SDE for the
price of a share)

Proof (cont). Recall that the differential of a function F (St) (which is is good enough,
say has two continuous derivatives) can be computed as follows:

dF (St) = F ′(St)dSt +
1

2
F ′′(St)(dSt)

2.

In our case F (x) = ln x and so F ′(x) = (ln x)′ = 1
x , F ′′(x) = (ln x)′′ = − 1

x2
and

(dSt)
2 = σ2S2

t dt (according to (17)). Hence

d ln(St) =
1

St
(aStdt + σStdWt)−

1

2

1

S2
t

× σ2S2
t dt = (a− σ2

2
)dt + σdWt .

Remark. We now see that indeed d ln(St) ̸= adt + σdWt .
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13.3. Stochastic differential equations (SDE for the
price of a share)

Proof (cont). Integrating both parts of the last display formula, we obtain∫ t

0
d ln(Su) =

∫ t

0
((a− σ2

2
)du + σdWu) =

∫ t

0
(a− σ2

2
)du +

∫ t

0
σdWu

and hence

ln(St)− ln(S0) = (a− σ2

2
)t + σWt

or, equivalently,

St
S0

= e(a−
σ2

2
)t+σWt and St = S0e

(a−σ2

2
)t+σWt .

□
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13.3. Stochastic differential equations (SDE for the
price of a share)

The second solution to (17) (not examinable).
This solution is slightly more difficult than the first one; it can be viewed as a
demonstration of the usefulness of the Ito formulae.
Plan: the main steps of the second solution.

1. Suppose that S(t) can be found in the form S(t) = f (t,Wt), where f (t, x) is a
function of two variables, t and x .

2. Use Ito’s lemma and substitute S(t) in (17) by f (t,Wt) and dS(t) by df (t,Wt).

3. Then see whether you can find f (t, x).
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13.3. Stochastic differential equations (SDE for the
price of a share)

Theorem 13.3

f (t, x) = S0e
µt+σx , where µ = a− σ2

2 and S0 = S(0).

Proof. Step 1. By Ito’s lemma,

df (t,Wt) =

(
∂f (t,Wt)

∂t
+

1

2

∂2f (t,Wt)

∂W 2
t

)
dt +

∂f (t,Wt)

∂Wt
dWt (19)

Substituting the left side of (17) by (19) we get(
∂f

∂t
+

1

2

∂2f

∂W 2
t

)
dt +

∂f

∂Wt
dWt = afdt + σfdWt , (20)

where we write f for f (t,Wt).
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13.3. Stochastic differential equations (SDE for the
price of a share)
Proof (cont). Equating the coefficients in front of dWt in both sides of (20), we get

∂f (t,Wt)

∂Wt
= σf (t,Wt) (21)

Rewrite (21) as
f ′x(t, x) = σf (t, x) (22)

We use here the notation f ′x = ∂f
∂x . Fix t, then (22) is the simplest linear equation (known

to you from the course Differential Equations). It has the general solution of the form

f (t, x) = c(t)eσx . (23)

Remark: you can check this by substituting this expression into (22). Do it!
Note that c(t) in (23) is an unknown function of t. It remains to find it.
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13.3. Stochastic differential equations (SDE for the
price of a share)
Proof (cont). Step 2. To find c(t), we shall use another relation which follows from
(20). Namely, we equate the coefficients in front of dt on both sides of (20) and get

f ′t (t, x) +
1

2
f ′′xx(t, x) = af (t, x). (24)

Next, it follows from (23) that
f ′t (t, x) = c ′(t)eσx (25)

f ′′xx(t, x) = σ2c(t)eσx (26)

Substituting (25) and (26) into (24) we get

c ′(t)eσx +
1

2
σ2c(t)eσx = ac(t)eσx

and so

c ′(t) = (a− σ2

2
)c(t) (27)
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13.3. Stochastic differential equations (SDE for the
price of a share)

Proof (cont). Hence c(t) = c0e
(a−σ2

2
)t , where c0 = c(0). Finally,

f (t, x) = c0e
µt+σx , where µ = a− σ2

2
.

□
We have thus proved that S(t) can be found in the form S(t) = f (t,Wt), namely:

S(t) = f (t,Wt) = c0e
µt+σWt .

Since S(0) = c0, we get c0 = S0 and finally

S(t) = S0e
µt+σWt .
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13.3. Stochastic differential equations (SDE for the
price of a share)

Remarks.

1. We use the following fact: if
y ′(x) = αy(x) (28)

then
y(x) = ceαx , where c is a constant. (29)

2. If c in (29) depends on, say, t (as in (23)) then this means that we are, for some
reason, considering a ”family of solutions” with t being the parameter of the family.

3. (28) and (29) were used to solve (22) and (27). They will be used also in the next
example.
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)

Definition 13.4 (The Ornstein-Uhlenbeck process (OUP))

We say that r(t) is the OUP if

dr = −a(r − µ)dt + σdWt (30)

where a, µ, σ are the parameters of the model.

We shall solve this equation for arbitrary (constant) parameters but in our applications
the parameters a, b will be positive: a > 0, µ > 0. Usually also σ > 0, but this is less
important.
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)

Before solving (30), let us consider the case when σ = 0. We then have
dr = −a(r − µ)dt, and since dr = r ′dt we obtain the following ordinary differential
equation:

r ′ = −a(r − µ). (31)

Then (r − µ)′ = −a(r − µ), (as (r − µ)′ = r ′ − µ′ = r ′) and hence

r − µ = ce−at , or r(t) = µ+ ce−at .

It is useful to note that if a > 0 then e−at → 0 as t → ∞ and hence r(t) → µ. Note also
that r(t) = µ is a solution to (31). (See the sketch of the graph of r(t) in the
hand-written version of the Week 9 Notes.)
If a > 0 then the solution r(t) = µ is the so called stable solution.
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)

Theorem 13.4

Suppose that r(t) is a random process which satisfies the equation

dr = −a(r − µ)dt + σdWt .

Then

r(t) = b + (r(0)− µ)e−at + σe−at

∫ t

0
easdWs .
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)
Proof. We shall be looking for a function u(t) such that

r(t)− µ = u(t)e−at (32)

Then u(t) = eat(r(t)− µ). By Ito’s lemma, we compute

du(t) = aeat(r − µ)dt + eatdr

= aeat(r − µ)dt + eat(−a(r − µ)dt + σdWt)

= σeatdWt

Hence
∫ t
0 du(s) = σ

∫ t
0 easdWs , or equivalently,

u(t)− u(0) = σ

∫ t

0
easdWs (33)
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)
Proof (cont). It follows from (32) that r(0)− µ = u(0). So (33) can be rewritten as

u(t) = u(0) + σ

∫ t

0
easdWs = r(0)− µ+ σ

∫ t

0
easdWs

and we obtain (again due to (32), replace the u(t)) that

r(t) = µ+ e−at

(
r(0)− µ+ σ

∫ t

0
easdWs

)
= r(0)e−at + µ(1− e−at) + σe−at

∫ t

0
easdWs

= (r(0)− µ)e−at + µ+ σe−at

∫ t

0
easdWs

□
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)

Some comments.
1. The most important step in the proof of this theorem is the “guess” (32). There is a
good reason for this guess but we shall not discuss it here. However, you are required to
know and be able to reproduce the above.
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13.3. Stochastic differential equations (The
Ornstein-Uhlenbeck process)
2. To compute du(t), we use the chain rule. In fact we derive it. Namely, if
dr = −a(r − µ)dt + σdWt and u = f (t, r), then

du = f ′t dt + f ′r dr +
1

2
f ′′rr (dr)

2.

In our case u(t) = f (t, r) = eat(r − µ) and therefore

f ′t =
∂

∂t
(eat(r − µ)) = aeat(r − µ),

f ′r =
∂

∂r
(eat(r − µ)) = eat ,

f ′′rr = 0.

This explains the second step.
Remark. We use the notation f ′t = ∂f

∂t , f
′
r = ∂f

∂r , and f ′′rr =
∂2f
∂r2

.
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