MTH6112 Actuarial Financial Engineering Coursework Week 8

1. (a) State the definition of the 'usual' differential of a function $F(x)$.

Solution $d F(x)=F^{\prime}(x) d x$.
(b) Use the relation $F(x+d x)-F(x) \approx d F(x)$ it to compute $e^{0.1}$ and $\ln 0.9$ (without a calculator).
Then compute $e^{0.1}$ and $\ln 0.9$ using a calculator and compare the results.
Solution We use the relation $F(x+d x) \approx F(x)+d F(x)=F(x)+$ $F^{\prime}(x) d x$.
If $F(x)=e^{x}$ then it is natural to choose $x=0$ and $d x=0.1$. Then $F(0)=1$ and $F^{\prime}(0)=1$. So $e^{0.1} \approx 1+0.1=1.1$
A calculator in this case gives $e^{0.1} \approx 1.1052$. So the error of our approximation is ≤ 0.0052
If $F(x)=\ln x$ then it is natural to choose $x=1$ and $d x=-0.1$. Then $F(1)=0$ and $F^{\prime}(1)=1$. So $\ln 0.9 \approx-0.1$.
Using a calculator in this case gives $\ln 0.9 \approx-0.1054$. So the error of our approximation is ≤ 0.0054
2. Reed Section 13.2 in the Slides of Week 8. Pay attention to the examples.
(a) State Ito's lemma for $F\left(W_{t}\right)$.

Solution $d F\left(W_{t}\right)=F^{\prime}\left(W_{t}\right) d W_{t}+\frac{1}{2} F^{\prime \prime}\left(W_{t}\right) d t$
(b) Compute $d F\left(W_{t}\right)$ for $F(x)=x^{3}$ and for $F(x)=e^{x}$.

Solution So, applying Ito's formula gives

$$
d\left(W_{t}^{3}\right)=3 W_{t}^{2} d W_{t}+3 W_{t} d t, \quad d\left(e^{W_{t}}\right)=e^{W_{t}} d W_{t}+\frac{1}{2} e^{W_{t}} d t
$$

(c) Use the results obtained in (b) to compute the following integrals

$$
\int_{0}^{t}\left(W_{s}\right)^{2} d W_{s} \quad \text { and } \quad \int_{0}^{t} e^{W_{s}} d W_{s}
$$

Solution 1 We obtain from (b):

$$
W_{t}^{2} d W_{t}=\frac{1}{3} d\left(W_{t}^{3}\right)-W_{t} d t, \quad e^{W_{t}} d W_{t}=d\left(e^{W_{t}}\right)-\frac{1}{2} e^{W_{t}} d t .
$$

Integrating both parts of these equalities, we obtain

$$
\int_{0}^{t}\left(W_{s}\right)^{2} d W_{s}=\frac{1}{3} W_{t}^{3}-\int_{0}^{t} W_{t} d t, \quad \int_{0}^{t} e^{W_{s}} d W_{s}=e^{W_{t}}-1-\frac{1}{2} \int_{0}^{t} e^{W_{t}} d t
$$

Solution 2 We know the following corollary of Ito's lemma (see the slides)

$$
\int_{a}^{b} F^{\prime}(W(t)) d W(t)=F(W(b))-F(W(a))-\frac{1}{2} \int_{a}^{b} F^{\prime \prime}(W(s)) d s .
$$

If $F^{\prime}(x)=x^{2}$ then $F(x)=\frac{1}{3} x^{3}+C$ where C is an arbitrary constant and $F^{\prime \prime}(x)=2 x$. Hence

$$
\int_{0}^{t}\left(W_{s}\right)^{2} d W_{s}=\frac{1}{3} W_{t}^{3}-\int_{0}^{t} W_{s} d s
$$

Similarly, if $F^{\prime}(x)=e^{x}$ then $F(x)=e^{x}+C, F^{\prime \prime}(x)=e^{x}$. So

$$
\int_{0}^{t} e^{W_{s}} d W_{s}=e^{W_{t}}-1-\frac{1}{2} \int_{0}^{t} e^{W_{s}} d s
$$

3. a) Consider a diffusion process $V(t), t \geq 0$, satisfying the following stochastic differential equation:

$$
\begin{equation*}
d V_{t}=(a+b \cos t) V_{t} d t+\sigma V_{t} d W_{t} \tag{1}
\end{equation*}
$$

Solve this equation using the method explained in lectures.
Solution Dividing both parts of the equation by V_{t} we get:

$$
\frac{d V_{t}}{V_{t}}=(a+b \cos t) d t+\sigma d W_{t} .
$$

The ratio $\frac{d V_{t}}{V_{t}}$ resembles the differential of the function $F(V)=\ln (V)$. Since V_{t} is a diffusion process, Ito's lemma tells us how to compute the differential of this function (which will not be equal to $\left.\frac{d V_{t}}{V_{t}}\right)$). Namely,

$$
d \ln \left(V_{t}\right)=F^{\prime}\left(V_{t}\right) d V_{t}+\frac{1}{2} F^{\prime \prime}\left(V_{t}\right)\left(d V_{t}\right)^{2}=\frac{1}{V_{t}} d V_{t}-\frac{1}{2 V_{t}^{2}}\left(d V_{t}\right)^{2},
$$

where we use the fact that $(\ln x)^{\prime}=\frac{1}{x},(\ln x)^{\prime \prime}=-\frac{1}{x^{2}}$. From (1) and because $\left(d V_{t}\right)^{2}=\sigma^{2} V_{t}^{2} d t$ (explain this!), we get:
$d \ln \left(V_{t}\right)=\frac{1}{V_{t}} \times\left[(a+b \cos t) V_{t} d t+\sigma V_{t} d W_{t}\right]-\frac{1}{2 V_{t}^{2}} \times \sigma^{2} V_{t}^{2} d t=\left(a-\frac{\sigma^{2}}{2}+b \cos t\right) d t+\sigma d W_{t}$.

Integration the relation $d \ln \left(V_{t}\right)=\left(a-\frac{\sigma^{2}}{2}+b \cos t\right) d t+\sigma d W_{t}$ over the interval $[0, t]$, we obtain:

$$
\int_{0}^{t} d \ln \left(V_{s}\right)=\int_{0}^{t}\left(a-\frac{\sigma^{2}}{2}+b \cos s\right) d s+\int_{0}^{t} \sigma d W_{s}
$$

and hence $\ln \left(V_{t}\right)-\ln \left(V_{0}\right)=\left(a-\frac{\sigma^{2}}{2}\right) t+b \sin t+\sigma W_{t}$. Finally,

$$
V(t)=V_{0} e^{\left(a-\frac{\sigma^{2}}{2}\right) t+b \sin t+\sigma W(t)}
$$

b) Write down $V(t)$ with $V_{0}=2.8, a=0.5, b=0.1$, and $\sigma=0.2$.

Solution We first compute $a-\frac{\sigma^{2}}{2}=0.23$. Hence

$$
V(t)=2.8 e^{0.23 t+0.1 \sin t+0.2 W(t)}
$$

Remark Here is one more way to solve (1). Namely, equation (1) for V has the same form as Equation (17) (Slide 27, Week 8) for S. According to Theorem 13.3, If we find $\mu(t)$ such that

$$
\begin{equation*}
\mu^{\prime}(t)+\frac{1}{2} \sigma^{2}=a+b \cos t \tag{2}
\end{equation*}
$$

then we can state that $V(t)$ coincides with $S(t)$ (with properly chosen s). Obviously, (2) implies that we can choose $\mu(t)=\left(a-\frac{\sigma^{2}}{2}\right) t+b \sin t$ and then according to Theorem 13.2 and 13.3,

$$
V(t)=s e^{\left(a-\frac{\sigma^{2}}{2}\right) t+b \sin t+\sigma W(t)}
$$

Since $V(0)=s=V_{0}$, we finally obtain:

$$
V(t)=V_{0} e^{\left(a-\frac{\sigma^{2}}{2}\right) t+b \sin t+\sigma W(t)}
$$

This solution is shorter than the one obtained by the method suggested in question (a). However, it is more artificial: one has to know the form of the solution.

