MTH6112 Actuarial Financial Engineering Coursework Week 8

1. (a) State the definition of the 'usual' differential of a function $F(x)$.
(b) Use the relation $F(x+d x)-F(x) \approx d F(x)$ it to compute $e^{0.1}$ and $\ln 0.9$ (without a calculator).
Then compute $e^{0.1}$ and $\ln 0.9$ using a calculator and compare the results.
2. Reed Section 13.2 in the Slides of Week 8. Pay attention to the examples.
(a) State Ito's lemma for $F\left(W_{t}\right)$.
(b) Compute $d F\left(W_{t}\right)$ for $F(x)=x^{3}$ and for $F(x)=e^{x}$.
(c) Use the results obtained in (b) to compute the following integrals

$$
\int_{0}^{t}\left(W_{s}\right)^{2} d W_{s} \quad \text { and } \quad \int_{0}^{t} e^{W_{s}} d W_{s}
$$

3. a) Consider a diffusion process $V(t), t \geq 0$, satisfying the following stochastic differential equation:

$$
\begin{equation*}
d V_{t}=(a+b \cos t) V_{t} d t+\sigma V_{t} d W_{t} \tag{1}
\end{equation*}
$$

Solve this equation using the method explained in lectures.
b) Write down $V(t)$ with $V_{0}=2.8, a=0.5, b=0.1$, and $\sigma=0.2$.

