MTH6112 Actuarial Financial Engineering Coursework Week 6

1. Consider a share with price $S(t), 0 \leq t \leq T$. Suppose that a proportional dividend on this share is paid continuously at rate q and is reinvested into the share. The interest rate compounded continuously is r. Let C be the price of the European call option $\operatorname{Call}(K, T)$ on this share and P be the be the price of the European put option $\operatorname{Put}(K, T)$ on the same share.
Prove that then the following Call-Put parity relation holds:

$$
C-P=e^{-q T} S(0)-e^{-r T} K .
$$

Solution We know the following fact: the prices C and P are given by

$$
C=e^{-r T} \tilde{\mathbb{E}}(S(T)-K)^{+} \text {and } P=e^{-r T} \tilde{\mathbb{E}}(K-S(T))^{+},
$$

where $\tilde{\mathbb{E}}$ is the expectation over the risk-neutral probability (defined on the space of all possible functions $S(t), 0 \leq t \leq T)$. Hence
$C-P=e^{-r T} \tilde{\mathbb{E}}(S(T)-K)^{+}-e^{-r T} \tilde{\mathbb{E}}(K-S(T))^{+}=e^{-r(T-t)} \tilde{\mathbb{E}}\left[(S(T)-K)^{+}-(K-S(T))^{+}\right]$
Since $x^{+}-(-x)^{+}=x$ we see that
$C-P=e^{-r T} \tilde{\mathbb{E}}(S(T)-K)=e^{-r T}(\tilde{\mathbb{E}}(S(T))-K)=e^{-r T} \tilde{\mathbb{E}}(S(T))-e^{-r T} K$.
Recall that $\tilde{\mathbb{E}}(S(T))=e^{(r-q) T} S(0)$ and therefore

$$
C-P=e^{-q T} S(0)-e^{-r T} K
$$

2. Recall the following definition of the index and of its value $I(t)$.

Definition For n shares with prices $S_{1}(t), S_{2}(t), \ldots, S_{n}(t)$ the index $I(t)$ is defined by

$$
I(t)=\omega_{1} S_{1}(t)+\omega_{2} S_{2}(t)+\cdots+\omega_{n} S_{n}(t)
$$

where $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ are positive numbers such that $\sum_{j=1}^{n} \omega_{j}=1$. The numbers w_{j} are called weights.
(a) Suppose that, unlike in the theorem proved in the notes, the strike price K_{j} for the $j^{\text {th }}$ option does depend on j. Moreover, suppose also that the weights ω_{j} do not necessarily satisfy the relation $\sum_{j=1}^{n} \omega_{j}=1$.
Prove that if $C_{j}\left(K_{j}, t\right)$ is the price of the call option on the share $S_{j}(t)$, $j=1, \ldots, n$, and $K=\sum_{j=1}^{n} \omega_{j} K_{j}$ then

$$
C_{I}(K, t) \leq \sum_{j=1}^{n} \omega_{j} C_{j}\left(K_{j}, t\right)
$$

(The notations we use clearly indicate that the expiration time of all options is t.)
Solution Below, we solve this problem for the case of a put option (case (b)). The solution for (a) is essentially the same as for (b). The only difference is that you have to replace P by $C, K-I(t)$ by $I(t)-K$ and $K_{j}-S_{j}(t)$ by $S_{j}(t)-K_{j}$.
(b) State and prove a similar relation for put options.

Solution Let $P_{I}(K, t)$ be the price of the $\operatorname{Put}(K, t)$ on the index. Then

$$
P_{I}(K, t) \leq \sum_{j=1}^{n} \omega_{j} P_{j}\left(K_{j}, t\right)
$$

Proof By the general theorem (you are supposed to quote Theorem 5.2 from Slides of Week 3),

$$
P_{I}(K, t)=e^{-r t} \tilde{\mathbb{E}}(K-I(t))^{+}
$$

Since

$$
K-I(t)=\sum_{j=1}^{n} \omega_{j} K_{j}-\sum_{j=1}^{n} \omega_{j} S_{j}(t)=\sum_{j=1}^{n} \omega_{j}\left(K_{j}-S_{j}(t)\right)
$$

we get that

$$
(K-I(t))^{+}=\left(\sum_{j=1}^{n} \omega_{j}\left(K_{j}-S_{j}(t)\right)\right)^{+} \leq \sum_{j=1}^{n} \omega_{j}\left(K_{j}-S_{j}(t)\right)^{+} .
$$

So
$P_{I}(K, t)=e^{-r t} \tilde{\mathbb{E}}(K-I(t))^{+} \leq e^{-r t} \sum_{j=1}^{n} \omega_{j} \tilde{\mathbb{E}}\left(K_{j}-S_{j}(t)\right)^{+}=\sum_{j=1}^{n} \omega_{j} P_{j}\left(K_{j}, t\right)$.
3. (a) State the definition of the implied volatility.

Solution Implied volatility is the solution σ of the equation

$$
C(K, T, S, \sigma, r)=c,
$$

where K, S, T, r are known parameters and c is the market price of the option (real life price of the option).
(b) Write down the expression for $\frac{\partial C}{\partial \sigma}$. Can you state that this derivative is non-negative?
Solution See Slides of Week 3\&4:

$$
\frac{\partial C}{\partial \sigma}=S \sqrt{T} \Phi^{\prime}(\omega)=\frac{1}{\sqrt{2 \pi}} S \sqrt{T} \mathrm{e}^{\frac{\omega^{2}}{2}} .
$$

It is clear from this expression that $\frac{\partial C}{\partial \sigma}>0$.
(c) Prove that implied volatility is uniquely defined (if it exists).

Solution Since $C(K, T, S, \sigma, r)$ is a monotone function of σ, the above equation has only one solution (if at all).
4. As usual, we denote by $W_{t} \equiv W(t)$ the values at time $t \geq 0$ of the (standard) Wiener process. You are reminded that by definition

$$
\int_{a}^{b} f(s) d W_{s}=\lim _{\delta \rightarrow 0} \sum_{i=0}^{n-1} f\left(t_{i}\right) \Delta W_{i}
$$

where

$$
a=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=b, \delta=\max _{0 \leq i \leq n-1} t_{i+1}-t_{i}, \text { and } \Delta W_{i}=W\left(t_{i+1}\right)-W\left(t_{i}\right) .
$$

(a) Compute the integral $\int_{0}^{3} f(s) d W_{s}$ in terms of the values of $W(t)$ for a
function defined by $f(s)= \begin{cases}-1 & \text { if } 0 \leq s<1, \\ 1 & \text { if } 1 \leq s<2, \\ -1 & \text { if } 2 \leq s \leq 3 .\end{cases}$
Solution We saw a similar example in lectures. Here is what we have done: if $f(s)=C$ when $s \in[a, b]$ then

$$
\begin{aligned}
\int_{a}^{b} C d W_{s} & =C \lim _{\delta \rightarrow 0} \sum_{i=0}^{n-1} \Delta W_{i}=C \lim _{\delta \rightarrow 0} \sum_{i=0}^{n-1}\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
& =C \lim _{\delta \rightarrow 0}\left(W\left(t_{n}\right)-W\left(t_{0}\right)\right)=C(W(b)-W(a)) .
\end{aligned}
$$

(Do understand the equality $\sum_{i=0}^{n-1}\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)=\left(W\left(t_{n}\right)-W\left(t_{0}\right)\right)$!) Hence in our case

$$
\begin{aligned}
\int_{0}^{3} f(s) d W_{s} & =\int_{0}^{1}(-1) d W_{s}+\int_{1}^{2} 1 d W_{s}+\int_{2}^{3}(-1) d W_{s} \\
& =-(W(1)-W(0))+(W(2)-W(1))-(W(3)-W(2)) \\
& =-W(3)+2 W(2)-2 W(1)
\end{aligned}
$$

(b) What is the distribution of the integral from part (a)?

Solution 1. By the definition of the Wiener process, the random variables $-(W(1)-W(0)),(W(2)-W(1)),-(W(3)-W(2))$ are independent and have the standard normal distribution $\mathcal{N}(0,1)$. Hence $\int_{0}^{3} f(s) d W_{s} \sim \mathcal{N}(0,3)$.
Solution 2. A theorem discussed in lectures states that

$$
\int_{a}^{b} f(s) d W_{s} \sim \mathcal{N}\left(0, \int_{a}^{b} f(s)^{2} d s\right) .
$$

Since in our case $\int_{a}^{b} f(s)^{2} d s=\int_{0}^{3} d s=3$, we get $\int_{0}^{3} f(s) d W_{s} \sim \mathcal{N}(0,3)$.
(c) Suppose that $f(s)= \begin{cases}2 & \text { if } 0 \leq s<1, \\ -2 & \text { if } s \geq 1 .\end{cases}$

Compute $Y(t)=\int_{0}^{t} f(s) d W_{s}$ for all $t \geq 0$ (in terms of the values of W).
Solution If $0 \leq t<1$ then $Y(t)=\int_{0}^{t} 2 d W_{s}=2 W(t)$. If $t \geq 1$ then

$$
\begin{aligned}
Y(t) & =\int_{0}^{t} 2 d W_{s}=\int_{0}^{1} 2 d W_{s}+\int_{1}^{t}(-2) d W_{s} \\
& =2 W(1)-2(W(t)-W(1))=-2 W(t)+4 W(1)
\end{aligned}
$$

Exercise: Prove that $Y(t)=2 \tilde{W}(t)$, where $\tilde{W}(t)$ is a standard Wiener process.
5. Read the Slides of this week.
a) Find the distribution of the random variables $\int_{0}^{t} s^{2} d W_{s}$ and $\int_{0}^{t} e^{-s} d W_{s}$.

Solution By Theorem 12.3,
$\operatorname{Var}\left(\int_{0}^{t} s^{2} d W_{s}\right)=\int_{0}^{t} s^{4} d s=\frac{1}{5} t^{5}, \quad \operatorname{Var}\left(\int_{0}^{t} e^{-s} d W_{s}\right)=\int_{0}^{t} e^{-2 s} d s=\frac{1}{2}\left(1-e^{-2 t}\right)$.
Hence, by Theorem 12.3 again, $\int_{0}^{t} s^{2} d W_{s} \sim \mathcal{N}\left(0, \frac{1}{5} t^{5}\right)$ and $\int_{0}^{t} e^{-s} d W_{s} \sim$ $\mathcal{N}\left(0, \frac{1}{2}\left(1-e^{-2 t}\right)\right)$.
b) Compute the variance of the random variables $\int_{0}^{t} W_{s}^{2} d W_{s}$ and $\int_{0}^{t} e^{-W(s)} d W_{s}$.

Solution We use Theorem 12.5:
Theorem Var $\left(\int_{a}^{b} f\left(W_{s}\right) d W_{s}\right)=\int_{a}^{b} \mathbb{E}\left[f\left(W_{s}\right)^{2}\right] d s$.
We thus have
$\operatorname{Var}\left(\int_{0}^{t} W_{s}^{2} d W_{s}\right)=\int_{0}^{t} \mathbb{E}\left[W_{s}^{4}\right] d s, \quad \operatorname{Var}\left(\int_{0}^{t} e^{-W(s)} d W_{s}\right)=\int_{0}^{t} \mathbb{E}\left[e^{-2 W(s)}\right] d s$
We know that $\mathbb{E}\left[W_{s}^{4}\right]=3 s^{2}$ (see Lemma 1.2, Week 1), $\mathbb{E}\left[e^{-2 W(s)}\right]=e^{2 s}$ (see the proof of Theorem 1.1, Week 1), and so

$$
\operatorname{Var}\left(\int_{0}^{t} W_{s}^{2} d W_{s}\right)=\int_{0}^{t} 3 s^{2} d s=t^{3}, \quad \operatorname{Var}\left(\int_{0}^{t} e^{-W(s)} d W_{s}\right)=\int_{0}^{t} e^{2 s} d s=\frac{1}{2}\left(e^{2 t}-1\right) .
$$

6. Consider a random process $Y(t), t \geq 0$, defined by $Y(t)=\int_{0}^{t} f(s) d W_{s}$.
(a) This process has independent increments. Prove the following particular case of this statement: if $0<\tau_{1}<\tau_{2}$ then the random variables $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)-Y\left(\tau_{1}\right)$ are independent.
Hint. This property is a corollary of the definition of the integral. You have to use the independence of the increments ΔW_{i} of the Wiener process.

Solution By the definitions of $Y(t)$ and of the integral, we have

$$
Y\left(\tau_{1}\right)=\int_{0}^{\tau_{1}} f(s) d W_{s}=\lim _{\delta \rightarrow 0} \sum_{i=0}^{n-1} f\left(t_{i}\right) \Delta W_{i}
$$

where $W_{i}=W\left(t_{i+1}\right)-W\left(t_{i}\right)$ with $0<t_{i}<t_{i+1} \leq \tau_{1}$. Next,

$$
Y\left(\tau_{2}\right)-Y\left(\tau_{1}\right)=\int_{\tau_{1}}^{\tau_{2}} f(s) d W_{s}=\lim _{\delta \rightarrow 0} \sum_{j=0}^{n^{\prime}-1} f\left(t_{j}^{\prime}\right) \Delta W_{j}^{\prime}
$$

where $W_{j}^{\prime}=W\left(t_{j+1}^{\prime}\right)-W\left(t_{j}^{\prime}\right)$ with $\tau_{1} \leq t_{j}^{\prime}<t_{j+1}^{\prime} \leq \tau_{2}$.
Since all $t_{i} \in\left[0, \tau_{1}\right]$ and all $t_{j}^{\prime} \in\left[\tau_{1}, \tau_{2}\right]$, we see that the corresponding W_{i} and W_{j}^{\prime} are independent random variables. Hence also the sums $\sum_{i=0}^{n-1}(\cdot)$ and $\sum_{j=0}^{n^{\prime}-1}(\cdot)$ are independent random variables and so are their limits.
(b) Using the property stated in (a) prove that if $t_{1}<t_{2}$ then

$$
\operatorname{Cov}\left(Y\left(t_{1}\right), Y\left(t_{2}\right)\right)=\operatorname{Var}\left(Y\left(t_{1}\right)\right)
$$

Solution By definition

$$
\begin{aligned}
\operatorname{Cov}\left(Y\left(t_{1}\right), Y\left(t_{2}\right)\right) & =\mathbb{E}\left(Y\left(t_{1}\right) Y\left(t_{2}\right)\right)-\mathbb{E}\left(Y\left(t_{1}\right)\right) \mathbb{E}\left(Y\left(t_{2}\right)\right) \\
& =\mathbb{E}\left(Y\left(t_{1}\right) Y\left(t_{2}\right)\right)
\end{aligned}
$$

where we use the fact that $\mathbb{E}(Y(t))=0$ (Theorem 12.3). Next,

$$
\begin{aligned}
\mathbb{E}\left(Y\left(t_{1}\right) Y\left(t_{2}\right)\right) & =\mathbb{E}\left(Y\left(t_{1}\right)\left(Y\left(t_{2}\right)-Y\left(t_{1}\right)+Y\left(t_{1}\right)\right)\right) \\
& =\mathbb{E}\left(Y\left(t_{1}\right)\left(Y\left(t_{2}\right)-Y\left(t_{1}\right)\right)\right)+\mathbb{E}\left(Y\left(t_{1}\right)^{2}\right) \\
& =\mathbb{E}\left(Y\left(t_{1}\right)^{2}\right)=\operatorname{Var}\left(Y\left(t_{1}\right)\right) .
\end{aligned}
$$

Note that we use the fact that $Y\left(t_{2}\right)-Y\left(t_{1}\right)$ and $Y\left(t_{1}\right)$ are independent! Remark. This proof is essentially the same as the proof of a similar property of the Wiener process.
(c) Compute $\operatorname{Cov}\left(Y\left(t_{1}\right), Y\left(t_{2}\right)\right)$ in the case when $Y(t)=\int_{0}^{t} e^{t-s} d W_{s}$.

Solution Note that $Y(t)=e^{t} \int_{0}^{t} e^{-s} d W_{s}$. Since $\operatorname{Cov}(a X, b Z)=a b \operatorname{Cov}(X, Z)$ for any random variables X, Y and any constants a, b, we obtain from this property and 3(b) that

$$
\begin{aligned}
\operatorname{Cov}\left(Y\left(t_{1}\right), Y\left(t_{2}\right)\right) & =e^{t_{1}+t_{2}} \operatorname{Var}\left(\int_{0}^{t_{1}} e^{-s} d W_{s}\right) \\
& =e^{t_{1}+t_{2}} \int_{0}^{t_{1}} e^{-2 s} d s=\frac{1}{2} e^{t_{1}+t_{2}}\left(1-e^{-2 t_{1}}\right)
\end{aligned}
$$

