MTH6112 Actuarial Financial Engineering
Coursework Week 6

1. Consider a share with price S(t), 0 < t < T. Suppose that a proportional
dividend on this share is paid continuously at rate ¢ and is reinvested into
the share. The interest rate compounded continuously is 7. Let C be the
price of the European call option Call(K,T) on this share and P be the be
the price of the European put option Put(K,T) on the same share.

Prove that then the following Call-Put parity relation holds:

C—-P=ec"75(0)—e"K.

Solution We know the following fact: the prices C' and P are given by
C=e"TE(S(T) - K)* and P=¢"TE(K — S(T))*,

where E is the expectation over the risk-neutral probability (defined on the
space of all possible functions S(t), 0 <t < T'). Hence

C—P=c¢"TE(S(T)-K) —e"TE(K—S(T))" = e "™ DE [(S(T) — K)" — (K — S(T))"]
Since 1t — (—x)T = x we see that
C—P=c¢"TE(S(T)~K)=e'T (]E(S(T)) - K> = e TE(S(T)) — e 7K.

Recall that E(S(T)) = e"~975(0) and therefore

C—P=ec75(0)—ec""K.

2. Recall the following definition of the index and of its value I(t).

Definition For n shares with prices S1(t), So(t),..., S,(t) the index I(t) is
defined by
I(t) = wlsl(t) + WQSQ(t) + -+ WnSn(t)7

where wq, we,..., w, are positive numbers such that Z?Zl w;j = 1. The
numbers w; are called weights.



(a)

Suppose that, unlike in the theorem proved in the notes, the strike price
K for the j™ option does depend on j. Moreover, suppose also that
the weights w; do not necessarily satisfy the relation Z?:l wj = 1.

Prove that if C;(Kj,t) is the price of the call option on the share S;(t),
j=1,.,n,and K =377 w;K; then

Cr(K 1) < wiCi(K t
j=1

(The notations we use clearly indicate that the expiration time of all
options is t.)

Solution Below, we solve this problem for the case of a put option (case
(b)). The solution for (a) is essentially the same as for (b). The only
difference is that you have to replace P by C, K —I(t) by I(t) — K and

— 55(t) by S;(t) — Kj.
State and prove a similar relation for put options.
Solution Let P;(K,t) be the price of the Put(K,t) on the index. Then

Pr(E 1) <Y wiP(Kj t
j=1

Proof By the general theorem (you are supposed to quote Theorem 5.2
from Slides of Week 3),

Pi(K,t) = e ™E(K — I(t))"

Since
=D wiK; =Y wiSi(t) =Y wi(K; - Si(t))
=1 j=1 j=1
we get that
(K (Z w;(K; — S;(t ) < ij (K; —S;(t)".
So

P(K,t)=e¢ "RB(K—I(t)" <e ”Zw] (K,;—S,(t Z%

i)



3. (a) State the definition of the implied volatility.
Solution Implied volatility is the solution o of the equation

C(K,T,S,o,1)=c,
where K, S, T, r are known parameters and c¢ is the market price of the

option (real life price of the option).

rite down € expression 1or =-—. an you state a 1S derivative 18
b) Write down th ion for 9¢. Can you state that this derivative i
non-negative?

Solution See Slides of Week 3&:4:

aC , 1 o2

It is clear from this expression that % > 0.

(¢) Prove that implied volatility is uniquely defined (if it exists).
Solution Since C(K, T, S,0,r) is a monotone function of o, the above
equation has only one solution (if at all).

4. As usual, we denote by W; = W(t) the values at time ¢ > 0 of the (standard)
Wiener process. You are reminded that by definition

0—0 4

b n—1
/nﬂ@wn:hmEZﬂmAw;
a =0
where

a=th<th1 <. <th,1<t,= b, 0 = max 1ti+1—ti, and AWl = W(tZJrl)_W(tZ)

0<i<n—

(a) Compute the integral f03 f(s)dWs in terms of the values of W (t) for a
1 if0<s<l1,
function defined by f(s) =< 1 if 1 <s<2,
-1 if2<s<3.

Solution We saw a similar example in lectures. Here is what we have
done: if f(s) = C when s € [a, b] then

b n—1 n—1
/a Caw, = Clim 2 AW, = Clim Z;(W(tm) W)

= Clim(W(t,) — W(t)) = C(W(b) — W(a)).

0—0



(Do understand the equality 327 (W (1) =W () = (W (t,)—W (t))!)

Hence in our case

/f )W, = / 1) dW, +/121dWs+/23(—1)dWs

W(1) =W (0)) + (W(2) - W(1)) = (W(3) - W(2)
= —W(3) +2W(2) — 2 (1).
(b) What is the distribution of the integral from part (a)?

Solution 1. By the definition of the Wiener process, the random vari-
ables —(W (1) — W (0)), (W(2) — W(1)), —(W(3) — W(2)) are inde-
pendent and have the standard normal distribution N (0, 1). Hence
fo s)dW, ~ N (0, 3).

Solution 2. A theorem discussed in lectures states that

/a L )W, ~ N (o, / ’ f(s)2d3> |

Since in our case fabf(s) s = fo s =3, we get fo s)dWy ~ N(0, 3).
2 if0<s<1,

-2 ifs>1.

Compute Y (t) = [ f(s)dW, for all t > 0 (in terms of the values of IW).
Solution If 0 < ¢t < 1 then Y (¢ fo 2dWy = 2W(t). If t > 1 then

Y(t):/OthWS:/O 2dW5+/1t(—2)dWS
_ QW) — 2W () — W(1)) = —2WW(£) + AW (1)

(c) Suppose that f(s) = {

Exercise: Prove that Y'(t) = 2W(t), where W (t) is a standard Wiener
process.

5. Read the Slides of this week.

a) Find the distribution of the random variables fot s2dW, and fot e SdWs.
Solution By Theorem 12.3,

t t 1 t t 1
Var (/ sdes) = / s'ds = —t°, Var </ edes> = / e ¥ds = —(1—e™?).
0 0 5 0 0 2

Hence, by Theorem 12.3 again, fot s2dW, ~ N(0, %t‘r’) and fg e dWy ~
N(0, (1 — e™2)).



b) Compute the variance of the random variables [ W2dW, and [; e-"V©)dW.

Solution We use Theorem 12.5:
Theorem Var ( I f(WS)dWS) = ["E[f(W,)%)ds.
We thus have

t t t ¢
Var (/ Wdes) - / E[Wj]d87 Var (/ e_W(S)dWS> = / E[G_ZW(S)]dS
0 0 0 0

We know that E[W1] = 3s? (see Lemma 1.2, Week 1), E[e™2V()] = €2* (see
the proof of Theorem 1.1, Week 1), and so

t t t t
1
Var (/ Wdes) :/ 3s%ds = t3, Var (/ e‘W(S)dWS> :/ eds = §(6%_1)_
0 0 0 0

6. Consider a random process Y (t), ¢ > 0, defined by Y (t) = fot f(s)dWs.

(a) This process has independent increments. Prove the following particular
case of this statement: if 0 < 71 < 75 then the random variables Y (1)
and Y (7)) — Y (m) are independent.

Hint. This property is a corollary of the definition of the integral. You
have to use the independence of the increments AW, of the Wiener
process.

Solution By the definitions of Y'(¢) and of the integral, we have

1 n—1
Vi) = [ reaw. = im 3 fe)AW
=0

where W, = W(t/LJrl) — W(tl) with 0 < ¢; < tiv:1 < 71. Next,

Y(n) - Y(r) = / F()dW, = lim ™ F(t) AW},
T1 =0

where Wi =W (t},,) — W(t}) with <), <1}, <.
Since all ¢; € [0, 1] and all #; € [, 72|, we see that the corresponding W;
and VVJ/ are independent random variables. Hence also the sums Z;:Ol (+)

and Z?/:_Ol() are independent random variables and so are their limits.



(b) Using the property stated in (a) prove that if ¢; < t5 then

Cov(Y (1)), Y (t2)) = Var(Y (t1)).

Solution By definition

Cov(Y (t1), Y (t2)) = E(Y (t2)Y (f2)) — E(Y (12))E(Y (£2))
= E(Y ()Y (L))

where we use the fact that E(Y(¢)) = 0 (Theorem 12.3). Next,

E(Y (81)Y (t2)) = E(Y (02)(Y(t2) — Y (1) + Y (t1)))
=E(Y (L) (Y (t2) = V(1)) + E(Y (1))
=E(Y(t)?) = Var(Y(t,)).

~

Note that we use the fact that Y (t5) — Y (¢1) and Y (¢;) are independent!

Remark. This proof is essentially the same as the proof of a similar
property of the Wiener process.

(¢) Compute Cov(Y (t1),Y (t2)) in the case when Y (t) = fg et=sdWs.
Solution Note that Y (¢) = €' fg e *dW;. Since Cov(aX,bZ) = abCov (X, Z)
for any random variables X, Y and any constants a, b, we obtain from
this property and 3(b) that
1
Cov(Y(t1),Y(t2)) = etlHQVar(/ e *dWs)
0

t1 1
= et / e *ds = §et1+t2(1 — e,
0



