
MTH6112 Actuarial Financial Engineering

Coursework Week 6

1. Consider a share with price S(t), 0 ≤ t ≤ T . Suppose that a proportional

dividend on this share is paid continuously at rate q and is reinvested into

the share. The interest rate compounded continuously is r. Let C be the

price of the European call option Call(K,T ) on this share and P be the be

the price of the European put option Put(K,T ) on the same share.

Prove that then the following Call-Put parity relation holds:

C − P = e−qTS(0)− e−rTK.

Solution We know the following fact: the prices C and P are given by

C = e−rT Ẽ(S(T )−K)+ and P = e−rT Ẽ(K − S(T ))+,

where Ẽ is the expectation over the risk-neutral probability (defined on the

space of all possible functions S(t), 0 ≤ t ≤ T ). Hence

C−P = e−rT Ẽ(S(T )−K)+−e−rT Ẽ(K−S(T ))+ = e−r(T−t)Ẽ
[
(S(T )−K)+ − (K − S(T ))+

]
Since x+ − (−x)+ = x we see that

C−P = e−rT Ẽ(S(T )−K) = e−rT
(
Ẽ(S(T ))−K

)
= e−rT Ẽ(S(T ))− e−rTK.

Recall that Ẽ(S(T )) = e(r−q)TS(0) and therefore

C − P = e−qTS(0)− e−rTK.

2. Recall the following definition of the index and of its value I(t).

Definition For n shares with prices S1(t), S2(t),. . . , Sn(t) the index I(t) is

defined by

I(t) = ω1S1(t) + ω2S2(t) + · · ·+ ωnSn(t),

where ω1, ω2,. . . , ωn are positive numbers such that
∑n

j=1 ωj = 1. The

numbers wj are called weights.
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(a) Suppose that, unlike in the theorem proved in the notes, the strike price

Kj for the jth option does depend on j. Moreover, suppose also that

the weights ωj do not necessarily satisfy the relation
∑n

j=1 ωj = 1.

Prove that if Cj(Kj, t) is the price of the call option on the share Sj(t),

j = 1, ..., n, and K =
∑n

j=1 ωjKj then

CI(K, t) ≤
n∑

j=1

ωjCj(Kj, t).

(The notations we use clearly indicate that the expiration time of all

options is t.)

Solution Below, we solve this problem for the case of a put option (case

(b)). The solution for (a) is essentially the same as for (b). The only

difference is that you have to replace P by C, K− I(t) by I(t)−K and

Kj − Sj(t) by Sj(t)−Kj.

(b) State and prove a similar relation for put options.

Solution Let PI(K, t) be the price of the Put(K, t) on the index. Then

PI(K, t) ≤
n∑

j=1

ωjPj(Kj, t).

Proof By the general theorem (you are supposed to quote Theorem 5.2

from Slides of Week 3),

PI(K, t) = e−rtẼ(K − I(t))+

Since

K − I(t) =
n∑

j=1

ωjKj −
n∑

j=1

ωjSj(t) =
n∑

j=1

ωj(Kj − Sj(t))

we get that

(K − I(t))+ =

(
n∑

j=1

ωj(Kj − Sj(t))

)+

≤
n∑

j=1

ωj(Kj − Sj(t))
+.

So

PI(K, t) = e−rtẼ(K−I(t))+ ≤ e−rt

n∑
j=1

ωjẼ(Kj−Sj(t))
+ =

n∑
j=1

ωjPj(Kj, t). □
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3. (a) State the definition of the implied volatility.

Solution Implied volatility is the solution σ of the equation

C(K,T, S, σ, r) = c,

where K, S, T, r are known parameters and c is the market price of the

option (real life price of the option).

(b) Write down the expression for ∂C
∂σ

. Can you state that this derivative is

non-negative?

Solution See Slides of Week 3&4:

∂C

∂σ
= S

√
TΦ′(ω) =

1√
2π

S
√
T e

ω2

2 .

It is clear from this expression that ∂C
∂σ

> 0.

(c) Prove that implied volatility is uniquely defined (if it exists).

Solution Since C(K,T, S, σ, r) is a monotone function of σ, the above

equation has only one solution (if at all).

4. As usual, we denote by Wt ≡ W (t) the values at time t ≥ 0 of the (standard)

Wiener process. You are reminded that by definition∫ b

a

f(s)dWs = lim
δ→0

n−1∑
i=0

f(ti)∆Wi,

where

a = t0 < t1 < ... < tn−1 < tn = b, δ = max
0≤i≤n−1

ti+1−ti, and ∆Wi = W (ti+1)−W (ti).

(a) Compute the integral
∫ 3

0
f(s)dWs in terms of the values of W (t) for a

function defined by f(s) =


−1 if 0 ≤ s < 1,

1 if 1 ≤ s < 2,

−1 if 2 ≤ s ≤ 3.

Solution We saw a similar example in lectures. Here is what we have

done: if f(s) = C when s ∈ [a, b] then∫ b

a

CdWs = C lim
δ→0

n−1∑
i=0

∆Wi = C lim
δ→0

n−1∑
i=0

(W (ti+1)−W (ti))

= C lim
δ→0

(W (tn)−W (t0)) = C(W (b)−W (a)).
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(Do understand the equality
∑n−1

i=0 (W (ti+1)−W (ti)) = (W (tn)−W (t0))!)

Hence in our case∫ 3

0

f(s)dWs =

∫ 1

0

(−1) dWs +

∫ 2

1

1 dWs +

∫ 3

2

(−1) dWs

= −(W (1)−W (0)) + (W (2)−W (1))− (W (3)−W (2))

= −W (3) + 2W (2)− 2W (1).

(b) What is the distribution of the integral from part (a)?

Solution 1. By the definition of the Wiener process, the random vari-

ables −(W (1) − W (0)), (W (2) − W (1)), −(W (3) − W (2)) are inde-

pendent and have the standard normal distribution N (0, 1). Hence∫ 3

0
f(s)dWs ∼ N (0, 3).

Solution 2. A theorem discussed in lectures states that∫ b

a

f(s)dWs ∼ N
(
0,

∫ b

a

f(s)2ds

)
.

Since in our case
∫ b

a
f(s)2ds =

∫ 3

0
ds = 3, we get

∫ 3

0
f(s)dWs ∼ N (0, 3).

(c) Suppose that f(s) =

{
2 if 0 ≤ s < 1,

−2 if s ≥ 1.

Compute Y (t) =
∫ t

0
f(s)dWs for all t ≥ 0 (in terms of the values of W ).

Solution If 0 ≤ t < 1 then Y (t) =
∫ t

0
2dWs = 2W (t). If t ≥ 1 then

Y (t) =

∫ t

0

2dWs =

∫ 1

0

2dWs +

∫ t

1

(−2) dWs

= 2W (1)− 2(W (t)−W (1)) = −2W (t) + 4W (1)

Exercise: Prove that Y (t) = 2W̃ (t), where W̃ (t) is a standard Wiener

process.

5. Read the Slides of this week.

a) Find the distribution of the random variables
∫ t

0
s2dWs and

∫ t

0
e−sdWs.

Solution By Theorem 12.3,

Var

(∫ t

0

s2dWs

)
=

∫ t

0

s4ds =
1

5
t5, Var

(∫ t

0

e−sdWs

)
=

∫ t

0

e−2sds =
1

2
(1−e−2t).

Hence, by Theorem 12.3 again,
∫ t

0
s2dWs ∼ N (0, 1

5
t5) and

∫ t

0
e−sdWs ∼

N (0, 1
2
(1− e−2t)).
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b) Compute the variance of the random variables
∫ t

0
W 2

s dWs and
∫ t

0
e−W (s)dWs.

Solution We use Theorem 12.5:

Theorem Var
(∫ b

a
f(Ws)dWs

)
=
∫ b

a
E[f(Ws)

2]ds.

We thus have

Var

(∫ t

0

W 2
s dWs

)
=

∫ t

0

E[W 4
s ]ds, Var

(∫ t

0

e−W (s)dWs

)
=

∫ t

0

E[e−2W (s)]ds

We know that E[W 4
s ] = 3s2 (see Lemma 1.2, Week 1), E[e−2W (s)] = e2s (see

the proof of Theorem 1.1, Week 1), and so

Var

(∫ t

0

W 2
s dWs

)
=

∫ t

0

3s2ds = t3, Var

(∫ t

0

e−W (s)dWs

)
=

∫ t

0

e2sds =
1

2
(e2t−1).

6. Consider a random process Y (t), t ≥ 0, defined by Y (t) =
∫ t

0
f(s)dWs.

(a) This process has independent increments. Prove the following particular

case of this statement: if 0 < τ1 < τ2 then the random variables Y (τ1)

and Y (τ2)− Y (τ1) are independent.

Hint. This property is a corollary of the definition of the integral. You

have to use the independence of the increments ∆Wi of the Wiener

process.

Solution By the definitions of Y (t) and of the integral, we have

Y (τ1) =

∫ τ1

0

f(s)dWs = lim
δ→0

n−1∑
i=0

f(ti)∆Wi,

where Wi = W (ti+1)−W (ti) with 0 < ti < ti+1 ≤ τ1. Next,

Y (τ2)− Y (τ1) =

∫ τ2

τ1

f(s)dWs = lim
δ→0

n′−1∑
j=0

f(t′j)∆W ′
j .

where W ′
j = W (t′j+1)−W (t′j) with τ1 ≤ t′j < t′j+1 ≤ τ2.

Since all ti ∈ [0, τ1] and all t′j ∈ [τ1, τ2], we see that the corresponding Wi

andW ′
j are independent random variables. Hence also the sums

∑n−1
i=0 (·)

and
∑n′−1

j=0 (·) are independent random variables and so are their limits.
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(b) Using the property stated in (a) prove that if t1 < t2 then

Cov(Y (t1), Y (t2)) = Var(Y (t1)).

Solution By definition

Cov(Y (t1), Y (t2)) = E(Y (t1)Y (t2))− E(Y (t1))E(Y (t2))

= E(Y (t1)Y (t2))

where we use the fact that E(Y (t)) = 0 (Theorem 12.3). Next,

E(Y (t1)Y (t2)) = E(Y (t1)(Y (t2)− Y (t1) + Y (t1)))

= E(Y (t1)(Y (t2)− Y (t1))) + E(Y (t1)
2)

= E(Y (t1)
2) = Var(Y (t1)).

Note that we use the fact that Y (t2)−Y (t1) and Y (t1) are independent!

Remark. This proof is essentially the same as the proof of a similar

property of the Wiener process.

(c) Compute Cov(Y (t1), Y (t2)) in the case when Y (t) =
∫ t

0
et−sdWs.

SolutionNote that Y (t) = et
∫ t

0
e−sdWs. Since Cov(aX, bZ) = abCov(X,Z)

for any random variables X, Y and any constants a, b, we obtain from

this property and 3(b) that

Cov(Y (t1), Y (t2)) = et1+t2Var(

∫ t1

0

e−sdWs)

= et1+t2

∫ t1

0

e−2sds =
1

2
et1+t2(1− e−2t1).
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