MTH6112 Actuarial Financial Engineering Coursework Week 6

1. Consider a share with price S(t), $0 \le t \le T$. Suppose that a proportional dividend on this share is paid continuously at rate q and is reinvested into the share. The interest rate compounded continuously is r. Let C be the price of the European call option $\operatorname{Call}(K,T)$ on this share and P be the be the price of the European put option $\operatorname{Put}(K,T)$ on the same share.

Prove that then the following Call-Put parity relation holds:

$$C - P = e^{-qT}S(0) - e^{-rT}K.$$

2. Recall the following definition of the index and of its value I(t).

Definition For n shares with prices $S_1(t), S_2(t), \ldots, S_n(t)$ the index I(t) is defined by

$$I(t) = \omega_1 S_1(t) + \omega_2 S_2(t) + \dots + \omega_n S_n(t),$$

where $\omega_1, \ \omega_2, \ldots, \ \omega_n$ are positive numbers such that $\sum_{j=1}^n \omega_j = 1$. The numbers w_j are called *weights*.

(a) Suppose that, unlike in the theorem proved in the notes, the strike price K_j for the j^{th} option does depend on j. Moreover, suppose also that the weights ω_j do not necessarily satisfy the relation $\sum_{j=1}^n \omega_j = 1$.

Prove that if $C_j(K_j, t)$ is the price of the call option on the share $S_j(t)$, j = 1, ..., n, and $K = \sum_{j=1}^n \omega_j K_j$ then

$$C_I(K,t) \le \sum_{j=1}^n \omega_j C_j(K_j,t).$$

(The notations we use clearly indicate that the expiration time of all options is t.)

- (b) State and prove a similar relation for put options.
- 3. (a) State the definition of the implied volatility.

- (b) Write down the expression for $\frac{\partial C}{\partial \sigma}$. Can you state that this derivative is non-negative?
- (c) Prove that implied volatility is uniquely defined (if it exists).
- 4. As usual, we denote by $W_t \equiv W(t)$ the values at time $t \geq 0$ of the (standard) Wiener process. You are reminded that by definition

$$\int_{a}^{b} f(s)dW_{s} = \lim_{\delta \to 0} \sum_{i=0}^{n-1} f(t_{i}) \Delta W_{i},$$

where

$$a = t_0 < t_1 < \dots < t_{n-1} < t_n = b, \ \delta = \max_{0 \le i \le n-1} t_{i+1} - t_i, \ \text{and} \ \Delta W_i = W(t_{i+1}) - W(t_i).$$

- (a) Compute the integral $\int_0^3 f(s)dW_s$ in terms of the values of W(t) for a function defined by $f(s) = \begin{cases} -1 & \text{if } 0 \leq s < 1, \\ 1 & \text{if } 1 \leq s < 2, \\ -1 & \text{if } 2 \leq s \leq 3. \end{cases}$
- (b) What is the distribution of the integral from part (a)?
- (c) Suppose that $f(s) = \begin{cases} 2 & \text{if } 0 \le s < 1, \\ -2 & \text{if } s \ge 1. \end{cases}$ Compute $Y(t) = \int_0^t f(s) dW_s$ for all $t \ge 0$ (in terms of the values of W).
- 5. Read the Slides of this week.
 - a) Find the distribution of the random variables $\int_0^t s^2 dW_s$ and $\int_0^t e^{-s} dW_s$.
 - b) Compute the variance of the random variables $\int_0^t W_s^2 dW_s$ and $\int_0^t e^{-W(s)} dW_s$.
- 6. Consider a random process Y(t), $t \ge 0$, defined by $Y(t) = \int_0^t f(s)dW_s$.
 - (a) This process has independent increments. Prove the following particular case of this statement: if $0 < \tau_1 < \tau_2$ then the random variables $Y(\tau_1)$ and $Y(\tau_2) Y(\tau_1)$ are independent.

Hint. This property is a corollary of the definition of the integral. You have to use the independence of the increments ΔW_i of the Wiener process.

(b) Using the property stated in (a) prove that if $t_1 < t_2$ then

$$Cov(Y(t_1), Y(t_2)) = Var(Y(t_1)).$$

(c) Compute $Cov(Y(t_1), Y(t_2))$ in the case when $Y(t) = \int_0^t e^{t-s} dW_s$.