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9. Call-Put Parity

Theorem 9.1

Suppose that the price S(t) of a share satisfies the relation

Ẽ(S(T )) = S0e
rT , (1)

where r is the interest rate compounded continuously and S0 = S(0). Then

C − P = S0 − e−rTK , (2)
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9. Call-Put Parity
Proof.
We know that C = e−rT Ẽ(S(T )− K )+ and P = e−rT Ẽ(K − S(T ))+. So

C − P = e−rT [Ẽ(S(T )− K )+ − Ẽ(K − S(T ))+]

(⋆)
= e−rT Ẽ[(S(T )− K )+ − (K − S(T ))+]

(⋆⋆)
= e−rT Ẽ[S(T )− K ]

= e−rT (Ẽ(S(T ))− K )

(⋆⋆⋆)
= e−rT (S0e

rT − K ) = S0 − e−rTK .

This proves the relation C − P = S0 − e−rTK .
It remains to explain the equalities used above:
(⋆) is just the standard property of any expectation: EX − EY = E(X − Y );
(⋆⋆) is due to x+ − (−x)+ = x which holds for any real number x (check this!);
(⋆ ⋆ ⋆) is due to condition (1).
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9. Call-Put Parity

Definition 9.1

The relation
C − P = S0 − e−rTK .

is called the Call-Put parity formula.
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9. Call-Put Parity

1. Condition (1) is crucial for the proof of the Call-Put Parity formula.

2. Condition (1) is satisfied when S(t) is the price of a share which at time T provides
the payoff S(T ). This is true for the standard Black-Scholes model. However, this is
not true if the share pays dividends.

3. Important exercise. Prove that if the price S(t) follows the geometric Brownian
motion and a dividend is paid continuously at rate q then the following version of the
Call-Put Parity formula holds:

C − P = e−qTS0 − e−rTK .

Hint: In this case Ẽ(S(T )) = e(r−q)TS(0). The rest of the proof remains the same.
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10. Indices and the diversification of risk
10.1. Definition of an index

Definition 10.1 (Index)

For n shares with prices S1(t),S2(t), . . . ,Sn(t) the index I (t) is defined by

I (t) = ω1S1(t) + ω2S2(t) + · · ·+ ωnSn(t),

where ω1, ω2, . . . , ωn are positive numbers such that
∑n

j=1 ωj = 1. The numbers
ω1, ω2, . . . , ωn are called weights.

Note that index can be viewed as the price at time t of a portfolio consisting of p1 shares
with price S1(t), p2 shares with price S2(t), ..., pn shares with price Sn(t).
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10.1. Definition of an index

Remarks.

• In the financial world, the expression a basket of n shares is used. The weights ωj

specify the number of shares in the basket with the prices Sj(t).

• Typical equity indices are FTSE 100, S&P500, EURO STOXX 50, Nikkei 225.
The value of these indices is given by a formula like the one above where Si (t) are
the share prices of some stocks called the constituents of the index, and the weights
ωi are specified by the organization that produces the index.
The number of constituent stocks is often added at the end of the name, so for
example FTSE 100 involves the price of n = 100 shares.
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10.1. Definition of an index
Remarks. (cont.)
• Indices are used to achieve risk diversification. If we buy a single stock we are
exposed to large losses if that stock or business sector under-performs. This is more
difficult if we combine different companies as happens in an index.
To explain this in more precise terms we first recall that for any two random variables
X and Y we have:

Var(X + Y ) = Var(X ) + 2ρXY
√

Var(X )Var(Y ) +Var(Y ),

where ρXY ∈ [−1, 1] is the correlation between X and Y . This implies, in the case of
negatively correlated random variables, ρXY < 0, that:

Var(X + Y ) < Var(X ) +Var(Y ).

If now X = S1 and Y = S2 are the prices of two negatively correlated assets then the
variance of the basket consisting of these two assets is lower than the sum of their
variances:

Var(S1 + S2) < Var(S1) +Var(S2), since ρS1S2 < 0. 9 / 46



10.2. Options on an index

What is the value of an option on an index?
More precisely, can we estimate the price of an option on I (t) in terms of prices Cj of
options on Sj(t)?
The answer is given by the following theorem.

10 / 46



10.2. Options on an index

Theorem 10.1

Suppose that S1(t), S2(t), . . . ,Sn(t) are the prices of the stocks
and that the corresponding weights are ω1, ω2, . . . , ωn.

Let CI (K , t) be the price of the call option on the index I (t)
and Cj(K , t) be the price of the call options on the stock with the price Sj(t),
j = 1, . . . , n. Then

CI (K , t) ≤
n∑

j=1

ωjCj(K , t).
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10.2. Options on an index
Proof. We know that CI (K , t) = e−rtẼ(I (t)− K )+ and Cj(K , t) = e−rtẼ(Sj(t)− K )+.
Note that

I (t)− K =
n∑

j=1

ωjSj(t)− K =
n∑

j=1

ωj(Sj(t)− K ),

where we use the equality K = K
∑n

j=1 ωj =
∑n

j=1(ωjK ) (remember that
∑n

j=1 ωj = 1).
Hence

(I (t)− K )+ =
( n∑

j=1

ωj(Sj(t)− K )
)+

≤
n∑

j=1

(ωj(Sj(t)− K ))+

=
n∑

j=1

ωj(Sj(t)− K )+
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10.2. Options on an index

Proof (cont.).
and therefore

e−rtẼ(I (t)− K )+ ≤ e−rt
n∑

j=1

ωjE(Sj(t)− K )+ =
n∑

j=1

ωje
−rtE(Sj(t)− K )+.

We thus proved that

CI (K , t) ≤
n∑

j=1

ωjCj(K , t).

□
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10.2. Options on an index

1. In the proof, we use the inequality (
∑n

j=1 xj)
+ ≤

∑n
j=1(xj)

+.

2. Formally speaking, we use also the fact that all strike prices and strike times are the
same. The following exercise shows that the first of these conditions can be relaxed.
Exercise.
Suppose that Kj is the strike price of the j th option and Cj(Kj , t) is the price of this
call option while the expiry time is t (as before). All numbers Kj may be different
but we suppose that K =

∑n
j=1 ωjKj . Prove that then again

CI (K , t) ≤
n∑

j=1

ωjCj(Kj , t).
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11. Volatility

We start with the statement of the problem.

As you will know, the simplest version of Black-Scholes formula contains 5 parameters of
which 4 may be viewed as known. They are:
r - the interest rate (compounded continuously) is defined by the bank,
S ≡ S(0) - the price of the share at time t = 0 is what the market tells us,
K , T - the strike price and the expiry time of the option, is stated by the contract
defining the option.

But what about volatility? Can we find the value of σ?

We shall discuss several solutions to this problem. One should always remember that the
Black-Scholes model is an attempt to describe a very complicated phenomenon by
relatively simple means.
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11. Volatility

Throughout the rest of this section, we suppose that:
1. The price of the share follows the geometric Brownian motion,

S(t) = S eµt+σW (t),

where, as usual, W (t) is the standard Wiener process and σ is the volatility parameter
that we want to estimate.
2. The price of the Call(K ,T ) option is given by the Black-Scholes formula

C ≡ C (S ,K ,T , σ, r) = SΦ(ω)− Ke−rTΦ(ω − σ
√
T ), (3)

where ω =
ln S

K
+rT

σ
√
T

+ 1
2σ

√
T and Φ(ω) = 1√

2π

∫ ω
−∞ e−

x2

2 dx (as usual).
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11.1. Historic volatility

Historic volatility is an estimate of volatility obtained from the values of the prices S(t)
recorded during some past period of time.
The word historic emphasizes the fact that the estimate is based on the knowledge of the
history of the process S(t).

Recall that in statistics, we compute the estimate s2 of the variance of a random variable
X as follows.
1. We record a sequence x1,. . . , xn of independently observed values of the random
variable X (called samples).
2. We then calculate the s2 as follows:

s2 =
1

n − 1

n∑
i=1

(xi − x)2 , where x =
1

n

n∑
i=1

xi .
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11.1. Historic volatility

So, to estimate σ we do the following.

• Record the values of S(t) on all working days of, say, a year which precedes the day
on which we want to estimate σ. (Usually, such information is readily available from
official sources related to the asset traders.)

More precisely, on the day number j we get the values S(t
(0)
j ) and S(t

(1)
j ),

where t
(0)
j is the time (of the morning) at which the price is recorded and t

(1)
j is the

time in the evening.

Say, t
(0)
j = 9 : 00, t

(1)
j = 17 : 00. The ∆t = t

(1)
j − t

(0)
j should be the same for each

day and j = 1, 2, ..., 251 (simply because 251 is usually the number of working days
in a year).
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11.1. Historic volatility

• Set

Xj = ln
S(t

(1)
j )

S(t
(0)
j )

= ln
S0e

µt
(1)
j +σW (t

(1)
j )

S0e
µt

(0)
j +σW (t

(0)
j )

= ln eµ∆t+σ(W (t
(1)
j )−W (t

(0)
j ))

= µ∆t + σ(W (t
(1)
j )−W (t

(0)
j )).

• Then Xj is a sequence of normal independent identically distributed random
variables, Xj ∼ N (µ∆t, σ2∆t)
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11.1. Historic volatility
So, from the statistics formulae above we get:

µ∆t ≈ 1

n

n∑
j=1

Xj ≡ X̄ ,

σ2∆t ≈ 1

n − 1

n∑
j=1

(Xj − X̄ )2,

σ2 ≈ 1

∆t(n − 1)

n∑
j=1

(Xj − X̄ )2.

We thus got an estimate for σ2 and hence also for

σ ≈

 1

∆t(n − 1)

n∑
j=1

(Xj − X̄ )2

 1
2

.

This approximate value of σ is the historic volatility. 20 / 46



11.2. Implied volatility

The historic volatility defined in the previous section is useful for computing the prices of
options if we are sure that σ does not depend on time (does not change as the time
passes by).

Our next estimate of σ does not use the past values of the prices of the share.
The idea is as follows.
The market “knows” the price of the option: the trade goes on - whether we know σ or
not.
So, we can in fact use the market price of the call option and view Equation (3) as an
equation for σ.
We shall now give a detailed explanation of this idea.

21 / 46



11.2. Implied volatility

Definition 11.1 (Implied volatility)

The implied volatility is the solution σ of the equation

C (σ) = c0, (4)

where c0 is the market price of the option at time t = 0 and C (σ) ≡ C (S ,K ,T , σ, r) is
viewed as a function of σ while K , S , T , r are known fixed numbers.
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11.2. Implied volatility

Lemma 11.1

Suppose that equation C (σ) = c0 has a solution. Then this solution is unique.

Proof.
We know the derivative

ν =
∂C (σ)

∂σ
= S

√
Tf (ω) > 0,

(where f (ω) = Φ′(ω) = 1√
2π
e−

ω2

2 ).

We therefore conclude that C (σ) is a strictly monotone function of σ and hence it crosses
the level c0 exactly one time. □
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11.2. Implied volatility
This simple Lemma allows us to answer the following question: what are the values of c0
for which the solution to equation (4) exists?
The answer follows from our next lemma.

Lemma 11.2

The following limits exist:

lim
σ→∞

C (σ) = S and lim
σ→0

C (σ) = (S − e−rTK )+.

Before proving this Lemma, let us state the answer to the above question.

Corollary 11.1

The (unique) solution σ to equation (4) exists if and only if the price c0 of the option
Call(K ,T ) satisfies (S − e−rTK )+ < c0 < S .

Exercise Even though this corollary is essentially obvious, do prove it.
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11.2. Implied volatility

Proof of Lemma 11.2.
The existence of the limits follows from the monotonicity of the function C (σ).

To compute the first limit, recall that ω =
log S

K
+rT

σ
√
T

+ 1
2σ

√
T an hence ω → ∞ when

σ → ∞. Also

ω − σ
√
T =

log S
K + rT

σ
√
T

− 1

2
σ
√
T → −∞ as σ → ∞.

Taking into account that Φ(∞) = 1 and Φ(−∞) = 0 we obtain from the Black-Scholes
formula that

lim
σ→∞

C (σ) = lim
σ→∞

(
SΦ(ω)− Ke−rTΦ(ω − 1

2
σ
√
T )

)
= SΦ(∞)− Ke−rTΦ(−∞) = S .
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11.2. Implied volatility
Proof of Lemma 11.2 (cont).
Next, let us find limσ→0 C (σ). To do that, we recall the other expression for C (σ):

C (σ) = e−rTE(Seµ̃T+σW (T ) − K )+.

Hence, when σ = 0 we obtain

C (0) = e−rTE(Seµ̃T − K )+ = e−rT (Seµ̃T − K )+.

Since µ̃ = r − 1
2σ

2, we get when σ = 0,

C (0) = e−rT (SerT − K )+ = (S − e−rTK )+.

□
Remark.
The first limit computed above shows that the price of a European call option is always
lower than the price of the underlying share: C < S . You are supposed to know that from
FMI.
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11.3. The volatility smile

If we suppose that the Black-Scholes model provides an exact description of the real
world behaviour of the prices S(t) and C (K ,T ,S , σ, r),
then the solution σ to equation (4) should not depend on the value of K or T
(since all of them are independent parameters of the model, and σ objectively exists
independent on the options).

This claim is easy to check experimentally because traders sell different European call
options on the same asset. Obviously, any two such option either have different K ’s or
different T ’s or differ in both K and T .
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11.3. The volatility smile

Figure: This is an example of the real life volatility smile. Source: Investopedia, By Cory Mitchell
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11.3. The volatility smile

Figure 1 presents the graph of volatilities of an option.
This kind of behaviour of the volatility σ as a function of K (while all other parameters
are fixed) has a remarkable name - it is called the volatility smile.

Since one can see a clear non-trivial dependence of σ on K , the conclusion is that the
Black-Scholes model does not provide an exact description of the real world prices!
Nevertheless, even the imperfect description it provides is enormously important.

29 / 46



12. Stochastic Calculus
12.1. The standard definition of the integral
Let us recall the standard definition of the integral

∫ b
a f (x)dx , where f : [a, b] → is a real

valued function on [a, b]. To define the integral we need the following construction.

1. Choose any n − 1 (interior) points from [a, b] such that

a = x0 < x1 < . . . , xn−1 < xn = b.

2. Consider the integral sum
∑n−1

i=0 f (ξi )∆xi , where ∆xi = xi+1 − xi and ξi ∈ [xi , xi+1]
(and is arbitrary otherwise).

3. Set δ = max0≤i≤n−1∆xi .
4. Finally, the integral of the function f (x) over [a, b] is, by definition, the limit of the

integral sum (if this limit exists):∫ b

a
f (x)dx = lim

δ→0

n−1∑
i=0

f (ξi )∆xi
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12.1. The standard definition of the integral

Theorem 12.1

If f (x) is a continuous function on [a, b],
then the limit limδ→0

∑n−1
i=1 f (ξi )∆xi exists

(and does not depend on the choice of xi , ξi , 0 ≤ i ≤ n).

Before we define the stochastic integral (also called the Ito integral) we have to recall
several properties of normal random variables and of the Wiener process which will play a
very important role in the study of these integrals.
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12.2. Stochastic integrals (the Ito integrals)
Properties of normal random variables and of the Wiener process.

1. If Z1,Z2, . . . ,Zn are independent normal random variables, Zi ∼ N (µi , σ
2
i ), then

n∑
i=1

Zi ∼ N (
n∑

i=1

µi ,

n∑
i=1

σ2
i ). (5)

2. As usual, we denote by W (t) ≡ Wt the standard Wiener process. By the definition
of the Wiener process the following properties hold:
1. W (0) = 0. 2. W (t + s)−W (t) ∼ N (0, s) if s > 0.
3. Let t0 = 0 < t1 < t2 < ... · · · < tn−1 < tn = t be any points from the interval
[0, t]. Set

∆Wi = W (ti+1)−W (ti ), i = 0, 1 . . . , n − 1 and ∆ti = ti+1 − ti . (6)

Then ∆Wi , i = 0, 1, ..., n − 1 are independent normal random variables,
∆Wi ∼ N (0,∆ti ).
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12.2. Stochastic integrals (the Ito integrals)

Our goal is to define

1.
∫ t
0 f (s)dWs , where f (s) is a “usual” function (not random).
This is a relatively simple case of a stochastic integral.

2.
∫ t
0 f (Ws)dWs - the stochastic integral of a function of a Wiener process which is a
somewhat more complicated case.

(a) Stochastic integral
∫ t
0 f (s)dWs

(b) Distribution of the random variable
∫ t
0 f (s)dWs

(c) Stochastic integral
∫ t
0 f (Ws)dWs
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12.2. Stochastic integrals (the Ito integrals)

(a) Stochastic integral
∫ t
0 f (s)dWs

Definition 12.1

Let t0 = 0 < t1 < t2 < · · · < tn = t be a sequence of points in [0, t] and define
δ = maxi ∆ti . Then ∫ t

0
f (s)dWs = lim

δ→0

n−1∑
i=0

f (ti )∆Wi (7)

if this limit exists.

Theorem 12.2

If f (x) is differentiable and f ′(x) is a continuous function then the limit in (7) exists.
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12.2. Stochastic integrals (the Ito integrals)
Let us consider several simple examples.
Example 1.
f (x) = c (constant), then∫ t

0
cdWs = lim

maxi ∆ti→0

n−1∑
i=0

c∆Wi = c lim
maxi ∆ti→0

n−1∑
i=0

∆Wi

where as above ∆Wi = W (ti+1)−W (ti ). Since

n−1∑
i=0

∆Wi = (W (t1)−W (t0)) + (W (t2)−W (t1)) + · · ·+ (W (tn)−W (tn−1))

= W (tn)−W (t0) = W (t)

we see that limmaxi ∆ti→0
∑n−1

i=0 ∆Wi =
∑n−1

i=0 ∆Wi = W (t) and therefore∫ t

0
cdWs = cW (t).
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12.2. Stochastic integrals (the Ito integrals)

Remark.
Always remember the identity

n−1∑
i=0

(bi+1 − bi ) = (b1 − b0) + (b2 − b1) + · · ·+ (bn − bn−1) = bn − b0.

We use it in the above example with bi = W (ti ).
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12.2. Stochastic integrals (the Ito integrals)

Example 2.

f (x) =

{
1, 0 ≤ x < 1.5,

−1, 1.5 ≤ x ≤ 2.

Then ∫ 2

0
f (s)dWs =

∫ 1.5

0
f (s)dWs +

∫ 2

1.5
f (s)dWs

=

∫ 1.5

0
dWs −

∫ 2

1.5
dWs = W (1.5)− (W (2)−W (1.5))

= 2W (1.5)−W (2)

We use
∫ b
a dWs = W (b)−W (a).
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12.2. Stochastic integrals (the Ito integrals)

Question What is the distribution of this integral? Denote
Y ≡ W (1.5)− (W (2)−W (1.5)).
Answer Since W (1.5) ∼ N (0, 1.5), W (2)−W (1.5) ∼ N (0, 0.5) and these random
variablesare independent, their difference Y ∼ N (0, 2). (This is a particular case of (5).
Explain this statement.)

Exercise.

f (x) =


1, 0 ≤ x < 1,

2, 1 ≤ x < 1.5,

−1.5, 1.5 ≤ x ≤ 3.

What is the distribution of
∫ 3
0 f (s)dWs ?
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12.2. Stochastic integrals (the Ito integrals)

(b) Distribution of the random variable
∫ t
0 f (s)dWs

The integral
∫ t
0 f (s)dWs is a random variable because it is defined as a limit of a sum of

random variables.

Question What is the distribution of this random variable?

It is remarkable that this question has a simple answer. Namely, our next theorem states
that this random variable has a normal distribution and, moreover, it is relatively easy to
compute the parameters of this distribution.
We shall see later that this fact plays a very important role in constructing solutions to
some questions arising in financial mathematics.
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12.2. Stochastic integrals (the Ito integrals)

Theorem 12.3∫ t
0 f (s)dWs ∼ N

(
0,
∫ t
0 (f (s))

2ds
)
.

Proof.
By the definition of a limit, ∫ t

0
f (s)dWs ≃

n−1∑
i=0

f (ti )∆Wi .

Since ∆Wi are independent random variables and ∆Wi = W (ti+1)−W (ti ) ∼ N (0,∆ti ),
the random variables f (ti )∆Wi are also independent and f (ti )∆Wi ∼ N (0, f (ti )

2∆ti ).
(Note that the last statement makes use of the fact that f (ti ) are not random variables!)
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12.2. Stochastic integrals (the Ito integrals)

Proof (cont).
Next, due to property (5) we conclude that

n−1∑
i=0

f (ti )∆Wi ∼
n−1∑
i=0

N (0, f (ti )
2∆ti ) = N (0,

n−1∑
i=0

f (ti )
2∆ti ).

By Theorem 12.1,

lim
maxi ∆ti→0

n−1∑
i=0

f (ti )
2∆ti =

∫ t

0
f (s)2ds

which finishes the proof.□
Exercise. Find the distributions of the random variables defined in the examples of (a).
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12.2. Stochastic integrals (the Ito integrals)

(c) Stochastic integral
∫ t
0 f (Ws)dWs

As before, let 0 = t0 < t1 < · · · < tn−1 < tn = t and δ = max0≤i≤n−1(ti+1 − ti ).

Definition 12.2

Let f :→ be a function. If the limit limδ→0
∑n−1

i=0 f (W (ti ))∆Wi exists, then we say that∫ b

a
f (Wt)dWt = lim

δ→0

n−1∑
i=0

f (W (ti ))∆Wi . (8)

Theorem 12.4

Suppose that the function f :→ has a bounded continuous derivative f ′(x). Then the
limit in (8) exists.
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12.2. Stochastic integrals (the Ito integrals)

The just defined integral is of course again a random variable. However, it may be very
difficult to finding the distribution of this random variable.
We finish this section by stating two properties of this stochastic integral:

Theorem 12.5

E
(∫ b

a
f (Wt)dWt

)
= 0, (9)

Var

(∫ b

a
f (Wt)dWt

)
=

∫ b

a
E[(f (Wt)

2]dt (10)
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12.2. Stochastic integrals (the Ito integrals)

Explanation (not examinable.)
First, let us introduce notations which will make our calculation less cumbersome. We set
Wi ≡ W (ti ) , fi ≡ f (Wi ) , ∆Wi ≡ W (ti+1)−W (ti ).
Since Wi and ∆Wi are independent, also the random variables fi = f (W (ti )) and ∆Wi

are independent. Hence

E(fi∆Wi ) = E(fi )× E(∆Wi ) = 0 because E(∆Wi ) = 0. (11)

It is now obvious that

E

(
n−1∑
i=0

fi∆Wi

)
=

n−1∑
i=0

E (fi∆Wi ) = 0

and (9) follows because E
(∫ b

a f (Wt)dWt

)
= limδ→0 E

(∑n−1
i=0 f (W (ti ))∆Wi

)
.
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12.2. Stochastic integrals (the Ito integrals)
Explanation (cont).
To explain (10), note that if i < j then

Cov(fi∆Wi , fj∆Wj) = E[fi∆Wi × fj∆Wj ] = E[fi∆Wi fj ]× E(∆Wj) = 0

where the expectation factorizes because ∆Wj is independent of the other three random
variables. We thus have that

Var

(
n−1∑
i=0

f (Wi )∆Wi

)
=

n−1∑
i=0

Var(fi∆Wi ) (12)

=
n−1∑
i=0

E(f 2i ∆W 2
i ) =

n−1∑
i=0

E(f 2i )× E(∆W 2
i ) (13)

=
n−1∑
i=0

E(f 2i )×∆ti (14)
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12.2. Stochastic integrals (the Ito integrals)

Explanation (cont).

The last sum converges, as δ → 0, to
∫ b
a E[(f (Wt)

2]dt and this implies (10) because

Var
(∫ b

a f (Wt)dWt

)
= limδ→0Var

(∑n−1
i=0 f (W (ti ))∆Wi

)
.

Remark.
1. In the above computation, we use E[∆W 2

i ] = ti+1 − ti = ∆ti . (Lemma 1.2, Week 1)
2. We use the following fact which you are supposed to know from second year
probability courses: if X1, ...,Xn are such that Cov(Xi ,Xj) = 0 when i ̸= j then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ).
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