MTH6112 Actuarial Financial Engineering Coursework Week 5

You may need the following theorems to solve the questions.
Theorem 1 Suppose that conditions (i), (ii), (iii) of Theorem 1 in Coursework Week 4 are satisfied and in addition dividend is paid continuously at rate q and is reinvested in the underlying asset.

Then the price $C_{q}(S, t)$ of the derivative with payoff (exercise) time t is given by

$$
C_{q}(S, t)=e^{-r t} \mathbb{E}(R(\tilde{S}(t))), \quad \text { where } \quad \tilde{S}(t)=S e^{\tilde{\mu} t+\sigma W(t)} \quad \text { and } \tilde{\mu}=r-q-\frac{\sigma^{2}}{2}
$$

Corollary We could equivalently say that $C_{q}(S, t)=C\left(e^{-t q} S, t\right)$.
Theorem 2 Suppose that conditions (i), (ii), (iii) of Theorem 1 in Coursework Week 4 are satisfied and in addition the proportionate dividend $D=d S\left(t_{0}\right)$ is payed at time t_{0}.

Then the price $C_{2}(S, t, d)$ of the derivative exercised at time t is computed as follows:
(a)If $t \leq t_{0}$ then
$C_{2}(S, t, d)=e^{-r t} \mathbb{E}(R(\tilde{S}(t)))$, where $\tilde{S}(t)=S e^{\tilde{\mu} t+\sigma W(t)} \quad$ and $\tilde{\mu}=r-\frac{\sigma^{2}}{2}$.
(b)If $t>t_{0}$ then
$C_{2}(S, t, d)=e^{-r t} \mathbb{E}(R(\tilde{S}(t)))$, where $\tilde{S}(t)=(1-d) S e^{\tilde{\mu} t+\sigma W(t)} \quad$ and $\tilde{\mu}=r-\frac{\sigma^{2}}{2}$.
Remark Equivalently, $C_{2}(S, t, d)=C(S, t)$ if $t \leq t_{0}$ and $C_{2}(S, t, d)=C((1-d) S, t)$ if $t>t_{0}$.

1. Recall the Question 2 of Coursework Week 4. Suppose that the price $S(t)$ of a share is described by the GBM with parameters S, μ, σ, r.

Suppose now that the above share provides a dividend yield of rate q which is paid continuously and is reinvested in the share. What is the price C of the derivative with the same payoff function?

Solution By Theorem 1, the only difference with Q2 of last week is that $\tilde{\mu}=r-q-\frac{\sigma^{2}}{2}$. So once again

$$
C=e^{-r t} \mathbb{E}(R(\tilde{S}(t)))=e^{-r T} \mathbb{E}\left(\tilde{S}(t)^{2}+1\right)=S^{2} e^{-r T+2 \tilde{\mu} T} \mathbb{E}\left(e^{2 \sigma W(t)}\right)+e^{-r T}
$$

but this time

$$
C=S^{2} e^{\left(r-2 q+\sigma^{2}\right) T}+e^{-r T} .
$$

2. Recall the Question 3 of Coursework Week 4. Suppose again that the price $S(t)$ of a share is described by the GBM with parameters S, μ, σ, r.

Consider an option with expiration time T and payoff function given by

$$
R(S(T))= \begin{cases}K & \text { if } S(T)<K \\ 0 & \text { if } S(T) \geq K\end{cases}
$$

(Note that if a portfolio consists of 1 share and 1 such option then the payoff of at least $£ K$ is guaranteed.)
(a) Suppose now that the above share provides a dividend yield of rate q which is paid continuously and is reinvested in the share. What is the price C_{q} of the derivative with the same payoff function?
Solution By Theorem 1 and its corollary,

$$
C_{q}(S, T)=C\left(S e^{-q T}, T\right)=e^{-r T} K \Phi\left(b\left(S e^{-q T, T}\right)\right) .
$$

(b) Suppose that a discrete proportionate dividend of rate d is paid at time $T / 2$ and is immediately reinvested in the share. The expiration time of the option is $t, 0<t \leq T$. Write down the formulae for the price of this option in the following 2 cases: $t \leq T / 2$ and $T / 2<t \leq T$.
Solution By Theorem 2, $C_{2}(S, t, d)=C(S, t)=e^{-r t} K \Phi(b(S, t))$ if $t \leq$ $T / 2$ and $C_{2}(S, t, d)=C(S, t)=e^{-r t} K \Phi(b((1-d) S, t))$ if $t>T / 2$.
3. Suppose that the price of a share is $S(t), 0 \leq t \leq T$. Suppose also that a discrete proportional dividend is paid at time t_{0} at rate d. Prove that if $S(t)>(1-d) S\left(t_{0}\right)$ for all $t \in\left(t_{0}, t_{0}+\epsilon\right)$, where $\epsilon>0$, then there is an arbitrage opportunity.

Solution If $S(t)>(1-d) S\left(t_{0}\right)$ for all $t \in\left(t_{0}, t_{0}+\epsilon\right)$ then the arbitrage is achieved as follows.

1. At time $t=t_{0}$ borrow $S\left(t_{0}\right)$ from a bank and buy the share for $S\left(t_{0}\right)$. As the owner of the share, you get the dividend $d S\left(t_{0}\right)$.
2. At time $\bar{t}, t_{0}<\bar{t}<t_{0}+\epsilon$ sell the share for $S(\bar{t})$ and give $S\left(t_{0}\right)$ back to the bank.

Your return now is

$$
d S\left(t_{0}\right)+S(\bar{t})-S\left(t_{0}\right)=S(\bar{t})-(1-d) S\left(t_{0}\right)>0
$$

You thus have not invested any of your money but got a positive return (and that is what arbitrage is).
Remark This solution doesn't take into account the fact that you are supposed to give back to the bank $\mathrm{e}^{r\left(\bar{t}-t_{0}\right)} S\left(t_{0}\right)$ which is more than $S\left(t_{0}\right)$. This does not matter because $\bar{t}-t_{0}$ is a very small time interval and therefore the difference $\mathrm{e}^{r\left(\bar{t}-t_{0}\right)}-1$ is so small that it can be ignored.
4. Suppose that the price $S(t)$ of the share is driven by a geometric Brownian motion with parameters S, μ, σ, that is $S(t)=S e^{\mu t+\sigma W(t)}$. Suppose also that a proportional dividend on this share is paid continuously at rate $q>0$ and is reinvested in the share. The continuously compounded interest rate is r. Compute the no-arbitrage price of a derivative with the payoff function $R(T)=\frac{1}{T} \int_{0}^{T} S(t) d t$.

Solution

By the general theorem (Theorem 5.6) and by the definition of $R(T)$,

$$
\begin{equation*}
C=e^{-r T} \tilde{E}\left(\frac{1}{T} \int_{0}^{T} S(t) d t\right)=\frac{e^{-r T}}{T} \tilde{E}\left(\int_{0}^{T} S(t) d t\right) \tag{1}
\end{equation*}
$$

By the general rule, in order to compute \tilde{E} we have to replace $S(t)$ in the expression for $R(T)$ by $\tilde{S}(t)$ and then compute the usual expectation. Thus

$$
\tilde{E}\left(\int_{0}^{T} S(t) d t\right)=E\left(\int_{0}^{T} \tilde{S}(t) d t\right)
$$

As stated in lectures, it is possible to change the order of the two operations:

$$
E\left(\int_{0}^{T} \tilde{S}(t) d t\right)=\int_{0}^{T} E(\tilde{S}(t)) d t
$$

Next, we know that

$$
E(\tilde{S}(t))=E\left(S e^{\tilde{\mu} t+\sigma W_{t}}\right)=S e^{\tilde{\mu} t+\frac{\sigma^{2}}{2} t}
$$

Since $\tilde{\mu}+\frac{\sigma^{2}}{2}=r-q$, we have

$$
E(\tilde{S}(t))=S e^{(r-q) t}
$$

and we obtain

$$
E\left(\int_{0}^{T} \tilde{S}(t) d t\right)=\int_{0}^{T} S e^{(r-q) t} d t=\frac{S}{r-q}\left(e^{(r-q) T}-1\right)
$$

Finally we obtain from (1):

$$
C=\frac{e^{-r T} S}{(r-q) T}\left(e^{(r-q) T}-1\right)=\frac{S}{(r-q) T}\left(e^{-q T}-e^{-r T}\right)
$$

5. A company's share is currently traded at the price of $£ 18.49$. A dividend on this share is paid continuously at rate q and is reinvested in the share. Two options are available on the market with the same strike price of $£ 18$ and the same maturity time of 6 months. European Call option is worth of $£ 1.72$ and a European Put option is priced at $£ 1.52$. Assuming the continuously compounded interest rate is 16%, find the dividend rate.
Hint: The Call-Put parity for a dividend paying share is

$$
C-P=S e^{-q T}-K e^{-r T}
$$

Please compare it with the Call-Put parity you learnt in Financial Mathematics 1. We will further discuss it in Week 6.
Solution: Using the Call-Put parity for a dividend paying share, where $C=1.72, P=1.52, S=18.49, T=0.5, K=18, r=0.16$. Thus

$$
q=-\frac{1}{T} \ln \frac{C-P+K e^{-r T}}{S}=0.1897(=18.97 \%)
$$

