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Reference

Ross, S., 2011 An Elementary Introduction to Mathematical Finance, 3rd Edition,
Cambridge University Press.

Great credit and thanks to Professor Ilya Goldsheid, the previous lecturer, for his excellent work in
producing the original version of these notes.
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Advice to learn this module

A lot of notations and equations are involved in this topic.
Don’t panic, they are just notations and rules, and we mathematicians play the game
using them.

Draw timelines

Timelines help you get a clear picture of all the cash flows at different time.

Every equation tells a story

Understand the economic meaning of each equation / math expression rather than
memorize it.

3 / 38



Two separate branches of Finance

There are two separate branches of Finance:

• Risk Neutral Probability - the Q World.
E.g., derivative pricing.

• Real World Probability - the P World.
E.g., risk and portfolio management.
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Overview of this week

1. Wiener Process, Brownian Motion, Geometric Brownian
Motion

1.1 Definitions
1.2 Covariance of the Wiener process
1.3 Some calculations with normal random variables
1.4 The expectation of the Geometric Brownian Motion
1.5 Computing the moments of the Wiener process
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1.1. Definitions

Definition 1.1

A stochastic process, Y (t), is a collection of random variables {Y (t)}t≥0.
That is, a random variable Y (t), for each t ≥ 0.

Stochastic processes are used to model time-dependent random quantities, for example:

• the price of oil at time t,

• the number of users of a telephone network at time t,. . .

The most basic stochastic process is Brownian motion.
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1.1. Definitions

Definition 1.2

Wiener process or Standard Brownian motion is a stochastic process W (t) such that:

1. W (0) = 0.

2. For any t < T the random variable W (T )−W (t) is normal with mean 0 and
variance T − t.
This is noted W (T )−W (t) ∼ N (0,T − t).

3. For any 0 < t1 < t2 < ... < tn the increments W (t1), W (t2)−W (t1), ...,
W (tn)−W (tn−1) are independent random variables.

4. The function t 7→ Wt is continuous.
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1.1. Definitions

Remarks:

1. Property (3) above is sometimes stated in the following equivalent way:
for any t < T , the randomvariable W (T )−W (t) is independent of the trajectory
W (τ), 0 ≤ τ ≤ t.
This is the so-called the Markov property.
It states that the future moves of Brownian motion do not depend on the past.

2. A difficult theorem shows that there actually exists a continuous stochastic process
with these properties. We will assume this fact.
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1.1. Definitions

In general Brownian motion is allowed to have different rates of increase and volatility.

Definition 1.3

Brownian motion with drift having

• drift parameters µ and

• volatility parameters σ

is the stochastic process Y (t) given by:

Y (t) = µt + σW (t).
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1.1. Definitions

Proposition 1.1

If Y (t) is a Brownian motion with drift, then:

1. Y (0) = 0.

2. For any t < T the random variable Y (T )− Y (t) is normal
with mean µ(T − t) and variance σ2(T − t).
This is noted Y (T )− Y (t) ∼ N (µ(T − t), σ2(T − t)).
In particular: For any T the random variable Y (T ) is normal with mean µT and
variance σ2T .

3. For any 0 < t1 < t2 < ... < tn
the increments Y (t1), Y (t2)− Y (t1), ..., Y (tn)− Y (tn−1)
are independent random variables.
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1.1. Definitions

Proof.

We leave this as an exercise. Hints:
Write Y in terms of W using Definition 1.3, then:

1. Comes from the fact that W (0) = 0.

2. Use properties in the definition of W and properties of the normal distribution.

3. Use the definition of independent variables.
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Sample path of a Brownian motion with drift 10%
(µ = 0.1) and volatility 25% (σ = 0.25).

t
Y0

Yt

Figure: Sample path of a Brownian motion with drift 10% (that is µ = 0.1) and volatility 25% (σ = 0.25).
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1.1. Definitions

Remark:
The evolution of the price of a financial asset is not adequately modelled with Brownian
motion because Brownian motion can easily become negative as the normal random
variable Y (t) ∼ N (µt, σ2t) can be negative.

Another reason why Brownian motion is not adequate is described in Ross (2011, pp.38)
and is related to the fact that the size of the increment Y (T )− Y (t) is independent of
Y (t).
This is against financial experience where the move of a stock tends to be a percentage
move,
for example 2%, which will be bigger if the stock price is Y (t) = $100 than if the stock
price were Y (t) = $90.
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1.1. Definitions

A better model for the random moves of a financial asset is Geometric Brownian Motion.

Definition 1.4

A Geometric Brownian motion with drift µ, volatility σ, and starting value S , is a process
S(t) given by

S(t) = Seµt+σW (t),

where W (t) is the Wiener process.
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1.1. Definitions
Remarks:

1. Note that as W (0) = 0 we have that S(0) = S . This explains the term starting
value in the definition above. We will often use S(0) instead of S to emphasize this.

2. The above definition is equivalent to stating that S(t) = S exp(Y (t)) where Y (t) is
a Brownian motion with drift µ and volatility σ. Or to stating that
log(S(t)) = log(S) + Y (t) = log(S) + µt + σW (t).1

3. The terminology for Brownian motion and Wiener process can vary slightly in
different references. You might find that what we call Wiener process in the notes is
called Brownian motion by some other authors. For example Ross(2011) does not
demand that Wiener process starts at 0 as we do. This does not normally lead to
any problems provided one is aware of the definitions being used.

1Note that all logarithms in higher mathematics are in base e. In mathematics text these logarithms
are written log or ln but in many calculators log refers to the decimal logarithm which we will never use.
So you should be careful when using a calculator. Note for example that the derivative of log(x) is 1/x
only if the logarithm is in base e.
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1.2. Covariance of the Wiener process

1. Wiener Process, Brownian Motion, Geometric Brownian
Motion

1.1 Definitions
1.2 Covariance of the Wiener process
1.3 Some calculations with normal random variables
1.4 The expectation of the Geometric Brownian Motion
1.5 Computing the moments of the Wiener process
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1.2. Covariance of the Wiener process

The Wiener process is an example of a Gaussian process.
We shall not be discussing the latter in this course, but it is useful to mention that all
their properties are (in some sense) defined by their covariance functions.

It is useful and easy to compute the Cov(Wt ,Ws) of the Wiener process.
Here and below we sometimes use the notation Wt instead of W (t).
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1.2. Covariance of the Wiener process

Lemma 1.1

If Wt is the Wiener process then Cov(Wt ,Ws) = min(t, s)
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1.2. Covariance of the Wiener process

Proof.

Recall that covariance of two random variables X , Y is defined by

Cov(X ,Y ) = E(XY )− E(X )E(Y ).

In our case, E(Wt) = E(Ws) = 0 and so Cov(Wt ,Ws) = E(WTWs).
Suppose that t ≤ s. Then

Cov(Wt ,Ws) = E(WtWs) = E(Wt(Ws −Wt +Wt)) = E(Wt(Ws −Wt)) + E(W 2
t ).

Since, by property 3 of the Wiener process, Wt and Ws −Wt are independent on the
random variable s, we have that E(Wt(Ws −Wt)) = E(Wt)E(Ws −Wt) = 0.
Thus Cov(Wt ,Ws) = E(W 2

t ) = Var(Wt) = t.
If s < t then a similar argument yields Cov(Wt ,Ws) = E(W 2

s ) = s. Thus
Cov(Wt ,Ws) = min(t, s).
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1.3. Some calculations with normal random
variables

1. Wiener Process, Brownian Motion, Geometric Brownian
Motion

1.1 Definitions
1.2 Covariance of the Wiener process
1.3 Some calculations with normal random variables
1.4 The expectation of the Geometric Brownian Motion
1.5 Computing the moments of the Wiener process
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1.3. Some calculations with normal random
variables

In order to better understand Geometric Brownian motion we need some basic results on
normal random variables.

Proposition 1.2

If X is the standard normal random variable with mean 0 and variance 1, X ∼ N (0, 1),
then for any µ ∈ R and σ > 0, we have that

Y = µ+ σX ∼ N (µ, σ2).
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1.3. Some calculations with normal random
variables
Proof:
Recall that by the definition of a normal random variable, the pdf of X is

fX (x) =
1√
2π
e−

x2

2 .

We have to prove that fY (y) =
1√
2πσ

exp
(
− (y−µ)2

2σ2

)
.

Also recall that fY (y) = F ′
Y (y), where FY (y) = P(Y ≤ y) is the distribution function of

Y . So

FY (y) = P (σX + µ ≤ y) = P
(
X ≤ y − µ

σ

)
= FX

(
y − µ

σ

)
(where FX is the distribution function of X ). Thus

fY (y) =
d

dy
FX

(
y − µ

σ

)
=

1

σ
fX

(
y − µ

σ

)
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1.3. Some calculations with normal random
variables

Proof (cont.):
and therefore

fY (y) =
1√
2πσ

e−
(y−µ)2

2σ2

□

Exercise:
Prove that Y = µ+ σX ∼ N (µ, σ2) also if σ < 0.

However, in this case fY (y) =
1√
2π|σ|e

− (y−µ)2

2σ2
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1.3. Some calculations with normal random
variables

Remark:
The above result can be obtained by applying the so called Transformation Formula
which states that if Y = g(X ) where g is a monotone function then the pdf of Y is

fY (y) = fX (g
−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ .
In our case g(x) = σx + µ, and since g−1(y) = (y − µ)/σ one obtains the result.
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1.3. Some calculations with normal random
variables

Corollary 1.1

If Y ∼ N (µ, σ2) and Z = aY + b, then Z ∼ N
(
aµ+ b, a2σ2

)
Proof.

To prove this we observe that according to Proposition 1.2, Y = µ+ σX , where X is a
standard normal random variable.
Hence Z = a(σX + µ) + b = aσX + (aµ+ b).
Once again, by Proposition 1.2, Z ∼ N

(
aµ+ b, a2σ2

)
.
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1.4. The expectation of the Geometric Brownian
Motion

1. Wiener Process, Brownian Motion, Geometric Brownian
Motion

1.1 Definitions
1.2 Covariance of the Wiener process
1.3 Some calculations with normal random variables
1.4 The expectation of the Geometric Brownian Motion
1.5 Computing the moments of the Wiener process
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1.4. The expectation of the Geometric Brownian
Motion

In order to use GBM, S(t), to model financial assets it will be important to know what
the expected value, E(S(t)) is.

Remark:
Note that the expectation of Brownian motion with drift µ and volatility σ is easy to
calculate since Y (t) = µt + σW (t) and W (t) ∼ N (0, t), we have, by Corollary 1.1, that
Y (t) ∼ N (µt, σ2t). Therefore

E (Y (t)) = µt and moreover Var (Y (t)) = σ2t.
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1.4. The expectation of the Geometric Brownian
Motion

The calculation of the expectation of Geometric Brownian motion is more complex.
We first recall the following formula:
if X is a random variable, fX (x) is its pdf, and g : R 7→ R is a function then

E (g(X )) =

∫ ∞

−∞
g(x)fX (x)dx if

∫ ∞

−∞
|g(x)|fX (x)dx < ∞. (1)
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1.4. The expectation of the Geometric Brownian
Motion

The expectation of GBM is given by the following:

Theorem 1.1

If S(t) is a Geometric Brownian Motion with drift µ and volatility σ then

E (S(t)) = S(0)eµt+
σ2t
2 .
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1.4. The expectation of the Geometric Brownian
Motion
Proof:
By the definition of the GBM, S(t) = S(0) exp(µt + σW (t)) and so

E (S(t)) = S(0)E
(
eµt+σW (t)

)
= S(0)eµtE

(
eσW (t)

)
It remains to compute E

(
eσW (t)

)
. W (t) ∼ N (0, t) with fW (t)(x) =

1√
2πt

exp
(
− x2

2t

)
and

by

E (g(X )) =

∫ ∞

−∞
g(x)fX (x)dx if

∫ ∞

−∞
|g(x)|fX (x)dx < ∞. (2)

we have:

E
(
eσW (t)

)
=

∫ +∞

−∞
eσx

1√
2πt

exp

(
−x2

2t

)
dx =

1√
2πt

∫ +∞

−∞
exp

(
−x2

2t
+ σx

)
dx .
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1.4. The expectation of the Geometric Brownian
Motion

Proof (cont.):
To compute the integral above we use a trick called completion of squares. Namely,

−x2

2t
+ σx = −x2 − 2tσx

2t
= −(x − tσ)2 − t2σ2

2t
= −(x − tσ)2

2t
+

tσ2

2
.

We thus have

E
(
eσW (t)

)
=

1√
2πt

∫ +∞

−∞
exp

(
−(x − tσ)2

2t
+

tσ2

2

)
dx

=
e

tσ2

2

√
2πt

∫ +∞

−∞
e−

(x−tσ)2

2t dx = e
tσ2

2 .
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1.4. The expectation of the Geometric Brownian
Motion

Proof (cont.):

The last equality is due to the fact that 1√
2πt

e−
(x−a)2

2t is the probability density function of

a normal random variable N (a, t) and hence, for any a,

1√
2πt

∫ +∞

−∞
e−

(x−a)2

2t dx = 1.

Combining the above we get

E (S(t)) = S(0)eµt+
σ2t
2 .□
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1.5. Computing the moments of the Wiener process

1. Wiener Process, Brownian Motion, Geometric Brownian
Motion

1.1 Definitions
1.2 Covariance of the Wiener process
1.3 Some calculations with normal random variables
1.4 The expectation of the Geometric Brownian Motion
1.5 Computing the moments of the Wiener process
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1.5. Computing the moments of the Wiener process

The just obtained equality E
(
eσW (t)

)
= e

σ2t
2 can be used for computing all moments of

the Wiener process.
We need the following equality:

ez = 1 + z +
z2

2!
+ ...+

zn

n!
+ ... =

∞∑
n=0

zn

n!
. (3)
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1.5. Computing the moments of the Wiener process

Lemma 1.2

For any integer j ≥ 1

E(W 2j
t ) =

(2j)!

j!2j
t j and E(W 2j−1

t ) = 0.
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1.5. Computing the moments of the Wiener process

Proof:
Equation (3) implies that

eσWt =
∞∑
n=0

σnW n
t

n!

and hence

E
(
eσWt

)
= E

( ∞∑
n=0

σnW n
t

n!

)
=

∞∑
n=0

σnE(W n
t )

n!
. (4)

On the other hand, applying (3) once again, we can write

e
σ2t
2 =

∞∑
n=0

σ2j t j

2j j!
. (5)
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1.5. Computing the moments of the Wiener process

Proof (cont.):

Since E
(
eσW (t)

)
= e

σ2t
2 , Equation 4 = Equation 5.

We thus have that for all σ,

∞∑
n=0

E(W n
t )

n!
σn =

∞∑
n=0

t j

2j j!
σ2j .

In the last equality, the coefficients in front of equal powers of σ must be the same.
Hence,
if n = 2j − 1 then E(W 2j−1

t ) = 0 (because the corresponding coefficients on the right are
zeros);

if n = 2j then E(W 2j
t )

2j! = t j

2j j!
which is the same as the first equality in the statement of the

Lemma.□
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1.5. Computing the moments of the Wiener process
The above calculations are formal and require justification which is beyond the scope of
this course.
We shall simply use the fact that the above relations are correct.
Our next Lemma is a simple but important corollary from the above.

Lemma 1.3

The 4th moment of Wt and the variance of W 2
t are given by

E(W 4
t ) = 3t2, Var(W 2

t ) = 2t2.

Proof:
Applying the above formulae in the case when j = 1 and j = 2 we obtain,

E(W 2
t ) =

(2)!

1!2
t = t and E(W 4

t ) =
4!

2!22
t2 = 3t2.

□
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