
MTH5126 - Statistics for Insurance  
 

 

Worksheet 1 - Solutions 
  

 
Question 1. 
 
Derive the formula for the MGF of the standard normal distribution.  

Hint: Complete the square in the exponent. 

 
Answer: 

 

 

 

Question 2. 

A random variable X follows a gamma distribution with parameters α and λ.  

(i) Derive the moment generating function (MGF) of X.    

(ii) Derive the coefficient of skewness of X.   



Answer: 
 
(i) 
 
        
       
        
 
 
 
        
 
 
        
 
        
 
(ii) 
 
 
 
 
 
 
 
 
 
        
 
        
        
 
 
 
 
 
         
 
 
 
 
 
 
         



 
 
 
 
 
 
 
          
 
 
          
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 

  



Question 3. MLE, Method of moments, Method of percentiles 

 

Hint: For part b, compare the density function in the question with the PDFs of the distributions 
you saw in lectures. 

Answer: 
 

 

So ˆk = 0.1946 is the maximum likelihood estimate of k. 



(b) Method of moments 

 

 

 

 

 

 

 

 

 

 

Exercise: You may want to check that you can indeed get the CDF, F (x) by integrating the pdf, f (u) 
from u=0 to u=x.  

 

  



Question 4. R 

In-built functions can be found in R for the distributions in the table below. The table below shows the 
R functions you need for a series of calculation.  

(i) Complete the table below.  

Hint: Feel free to search online. Or type and run ?dgamma and Help notes will appear. Similarly 
for the other functions. 

 

Calculation 
required 

X~Exp(λ) X~Gamma(α, λ) X~logN(µ, σ2) X~Weibull(c,γ) 

f(x) dexp(x, λ)    
F(q) pexp(q, λ)    
Find q for    
P(X< q) = p 

qexp(p, λ)    

Simulate n 
random variates 

rexp(n, λ)    

 

(ii) Use R to find the median for the following distribution: Weibull(0.1099, 0.2). 

 

Answer: 

(i) 

Calculation 
required 

X~Exp(λ) X~Gamma(α, λ) X~logN(µ, σ2) X~Weibull(c,γ) 

f(x) dexp(x, λ) dgamma(x, α,λ) dlnorm(x,µ, σ) dweibull(x, γ, c -(1/ γ) ) 
F(q) pexp(q, λ) pgamma(q, α,λ) plnorm(q,µ, σ) pweibull(q, γ, c -(1/ γ) ) 
Find q for    
P(X< q) = p 

qexp(p, λ) qgamma(p, α,λ) qlnorm(p,µ, σ) qweibull(p, γ, c -(1/ γ) ) 

Simulate n 
random variates 

rexp(n, λ) rgamma(n, α,λ) rlnorm(n,µ, σ) rweibull(n, γ, c -(1/ γ) ) 

 

Note that this website gives examples of how to plot graphs for the lognormal distribution but by 
changing some of the commands, you will be able to plot graphs for other distributions too: 

Log Normal Distribution in R (4 Examples) | dlnorm, plnorm, qlnorm, rlnorm (statisticsglobe.com)  

 

(ii)  

> qweibull(0.5,0.2, 0.1099^(-5)) 

[1] 9980.191 

The median for the Weibull(0.1099, 0.2) distribution is 9980.191. 

  



Question 5. R 

There are no in-built functions in R for the Pareto(α, λ) distribution. So we have to define the functions 
dpareto, ppareto, qpareto and rpareto from first principles. This has been done for 
dpareto as follows.  

 

dpareto <- function(x,a,lambda){ 

  a*lambda^(a)/( (lambda+x)^(a+1) ) 

} 

 

(i) Write down the R code for ppareto, qpareto and rpareto, and paste your coding into 
your answer. 

Hint: runif generates random numbers which are between 0 and 1. Use this when you define 
rpareto. 

 

(ii) Simulate, using rpareto, 1,000 values from a Pareto distribution with parameters α = 3, λ = 1, 
assigning the simulation to a variable called Pareto_vector and calculate the mean and variance 
of the simulated values. 

Hint: Use the mean and var functions in R. 

 

  



Answer: 

(i) 

ppareto <- function(q,a,lambda){ 

  1 - (lambda/(lambda+q))^a 

} 

 

qpareto <- function(p,a,lambda){ 

  lambda*( (1-p)^(-1/a) -1) 

} 

 

rpareto <- function(n,a,lambda){ 

  lambda*( (1-runif(n))^(-1/a) -1) 

} 

(ii) 

> set.seed(42) 

> Pareto_vector <- rpareto(1000,3,1) 

> mean(Pareto_vector) 

[1] 0.4658703 

> var(Pareto_vector) 

[1] 0.4288426 

The mean and variance of the simulated values are 0.4658703 and 0.4288426 respectively. 

Note: The random number generator functions simulate a sample of n random variates from a specified 
distribution. You are advised to specify an initial value for the recursion, using the set.seed() 
function, so you can reproduce your numbers. Otherwise, you’ll generate a different set of numbers 
every time you run your code. It doesn’t matter what seed value you use. The seed value in the 
solution has been chosen arbitrarily. 


