MTH5126 - Statistics for Insurance

Academic Year: 2022-23

Semester: B

Worksheet 7 - Solutions

Q1. Copula

(i) Write down Sklar's theorem.

(ii) Explain, in words, the meaning of the following copula expression: C(u, v, w)

The Gumbel copula has a generating function: $\psi(F(x)) = (-\ln F(x))^{\alpha}$ where $1 \le \alpha < \infty$

(iii) Derive an expression for the Gumbel (Hougaard) copula for the case where there are three variables.

A student has fitted a Gumbel copula to investment returns from three developing markets, and has calculated a value for the dependency parameter, α , of 4.0.

She has separately determined that the probability of making a loss over the next calendar year (i.e., the probability that the return is less than 0%) in each of the three markets is 5%, 7.5% and 10% respectively.

(iv) Calculate the probability that all three markets have returns of less than 0% over the next calendar year.

(v) State what type of copula is equivalent to a Gumbel copula if $\alpha = 1.0$.

(vi) Calculate the probability that all three markets have returns of less than 0% over the next calendar year, assuming that each of the markets were independent.

Answer:

(i) Let F be a joint distribution function with marginal cumulative distribution functions $F_1, ..., F_d$. Then there exists a copula C such that for all $x_1, ..., x_d \in [-\infty, \infty]$: $F(x_1, ..., x_d) = C[F_1(x_1), ..., F_d(x_d)]$

(ii) C [*u*, *v*, *w*]

This gives the probability that RV1 is in the bottom u percentile, and RV2 is in the bottom v percentile, and RV3 is in the bottom w percentile.

(iii) The Gumbel generating function is defined:

 $\Psi(t) = (-\ln t)^{\alpha}$

- Check $\Psi(0) = \lim_{t \to 0} (-\ln t)^{\alpha} = \infty$, so the pseudo-inverse equals the normal inverse
- Now invert the relationship $x = (-\ln y)^{\alpha}$ to find the normal inverse function:

 $y = \exp(-x^{1/\alpha})$

- So, C(u, v, w) = $\Psi^{(-1)}(\Psi(u) + \Psi(v) + \Psi(w))$ = $\Psi^{(-1)}(\Psi(u) + \Psi(v) + \Psi(w))$, since the pseudo-inverse equals the normal inverse = $\Psi^{(-1)}([-\ln u]^{\alpha} + [-\ln v]^{\alpha} + [-\ln w]^{\alpha})$ = exp(- { [-ln u]^{α} + [-ln v]^{α} + [-ln w]^{α} }^{1/ α})
- (iv) P(all three markets have returns of less than 0% over the next calendar year) = C(0.05, 0.075, 0.1)= $exp(- \{ [-ln 0.05]^4 + [-ln 0.075]^4 + [-ln 0.1]^4 \}^{0.25})$ = 2.957%

(v) Independent OR Independence OR Product

```
Check: If \alpha = 1,

C(u, v, w) = \exp(-\{[-\ln u]^{1} + [-\ln v]^{1} + [-\ln w]^{1}\}^{1/1})

= \exp(\ln u + \ln v + \ln w)

= \exp(\ln uvw)

= uvw
```

(vi)

EITHER:

P(all three markets have returns of less than 0% over the next calendar year) = 0.05 * 0.075 * 0.1 = 0.0375%

OR:

 $\begin{aligned} & \text{P(all three markets have returns of less than 0% over the next calendar year)} \\ & = & \exp(-((-\ln 0.05)^{1} + (-\ln 0.075)^{1} + (-\ln 0.1)^{1})^{1}) \\ & = & \exp(\ln 0.05 + \ln 0.075 + \ln 0.1) \end{aligned}$

= 0.05 * 0.075 * 0.1 = 0.0375%

Q2. Copula

Let *X* and *Y* be two random variables representing the future lifetimes of two 40-year old individuals. The two lives are married. You are given that:

 $P(X \le 20) = 0.17831$ and $P(Y \le 20) = 0.11086$

Calculate the joint probability that both lives will die by the age of 60 using the Frank copula with $\alpha = 5$.

Answer:

$$P(X \le 20, Y \le 20)$$

= $C[u, v]$, where $u = P(X \le 20), v = P(Y \le 20)$
= $-\frac{1}{\alpha} \ln \left(1 + \frac{\left(e^{-\alpha u} - 1\right)\left(e^{-\alpha v} - 1\right)}{\left(e^{-\alpha} - 1\right)} \right)$
= $-\frac{1}{5} \ln \left(1 + \frac{\left(e^{-5 \times 0.17831} - 1\right)\left(e^{-5 \times 0.11086} - 1\right)}{\left(e^{-5} - 1\right)} \right)$

= 0.0583

Q3. Copula

(i) Derive the coefficient of upper tail dependence for the Gumbel copula.

(ii) Comment on how the value of the parameter α affects the degree of upper tail dependence in the case of the Gumbel copula.

Answer:

(i) The coefficient of upper tail dependence

$$\lambda_U = \lim_{u \to 1^-} \left(\frac{1 - 2u + C[u, u]}{1 - u} \right)$$

For the Gumbel copula setting u = v gives:

$$C[u,u] = \exp\left\{-\left((-\ln u)^{\alpha} + (-\ln u)^{\alpha}\right)^{1/\alpha}\right\}$$
$$= \exp\left\{-\left(2(-\ln u)^{\alpha}\right)^{1/\alpha}\right\}$$
$$= \exp\left\{-\left(2^{1/\alpha}(-\ln u)\right)\right\}$$
$$= \exp\left\{\left(2^{1/\alpha}\ln u\right)\right\}$$
$$= \exp\left\{\ln u^{2^{1/\alpha}}\right\}$$
$$= u^{2^{1/\alpha}}$$

The coefficient of upper tail dependence is given by:

$$\lambda_{U} = \lim_{u \to 1^{-}} \frac{1 - 2u + C[u, u]}{1 - u} = \lim_{u \to 1^{-}} \frac{1 - 2u + u^{2^{1/\alpha}}}{1 - u}$$

In the limit this fraction has the form $\frac{0}{0}$, which is undefined. However, we can use L'Hôpital's

rule, $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$, to find the value of the limit:

$$\lambda_{U} = \lim_{u \to 1^{-}} \frac{1 - 2u + u^{2^{1/\alpha}}}{1 - u} = \lim_{u \to 1^{-}} \frac{-2 + 2^{1/\alpha} u^{2^{1/\alpha} - 1}}{-1} = 2 - 2^{1/\alpha}$$

(ii) As α increases, $2^{1/\alpha}$ reduces and hence 2 - $2^{1/\alpha}$ increases. So, increasing the value of the parameter α increases the degree of upper tail dependence of the Gumbel copula.