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Extreme Value Theory
• Extreme	events
• Key	idea

Generalised Extreme Value (GEV) distribution
• Fréchet-type,	Weibull-type	and	Gumbel-type	GEV	

distribution

Generalised Pareto Distribution (GPD)
• Threshold	exceedances
• Calculating	threshold	exceedances	using	R
• GPD

Extreme Value Theory
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Measures of tail weight:
Existence of moments
Limiting density ratios

• Plotting	the	limiting	density	ratios	using	R

Hazard rate
• Example:	Pareto	distribution
• Plotting	hazard	rate	using	R

Mean residual life
• Example:	Pareto	distribution
• Plotting	mean	residual	life	using	R



Q. Define an ‘extreme’ event in terms of its frequency and severity.
Answer: An extreme event is one that occurs with very low frequency and very high severity.
Q. Why is it difficult to model extreme events?
Answer: 

• The	low	frequency	of	these	events	means	there	is	relatively	little	data	to	model	their	effects	accurately.
• The	‘true’	distribution of	many	types	of	financial	data	are	more	leptokurtic	(more	narrowly	peaked,	

with	fatter	tails.	Having	greater	kurtosis	than	the	normal	distribution;	more	concentrated	about	the	
mean)	than	a	normal	distribution.

• The	volatility of	financial	variables	does	not	remain	constant,	but	varies	stochastically	over	t.	This	
property	is	called	heteroscedasticity.	

• Even	if	we	select	an	appropriate	form	of	fat-tailed	distribution,	if	we	attempt	to	fit	the	distribution	using	
the	whole	of	our	dataset,	this	is	unlikely	to	result	in	a	good	model	for	the	tails	because	parameter
estimates	are	inappropriately	affected	by	the	main	bulk	of	the	data	in	the	middle of	the	distribution.

Extreme Value Theory
Extreme events
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Extreme Value Theory
Extreme events
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Ø The key idea of extreme value theory is that the asymptotic behavior of the tails of most 
distributions can be accurately described by certain families of distributions. 
Q.	What	does	‘asymptotic	behaviour of	the	tails	of	a	distribution’	mean?
Answer:	The	phrase	is	referring	to	how	the	distribution	behaves	in	the	limit,	as	a	certain	parameter	
(such	as	the	number	of	observations	in	a	sample)	tends	to	infinity.	

Ø Two approaches:
• Modelling the maximum values of a distribution – with the generalised extreme value 

distributions, 
• Modelling the values exceeding a threshold – with the generalised Pareto distributions. 

Extreme Value Theory
Key idea
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Ø Let losses Xi be IID with cumulative distribution F(xi).
Ø Divide your observations into blocks of size n, i.e., in each block you have n

observations, X1 to Xn. Find the maximum in each block. Let
XM = max{ X1 , X2 , X3 , …, Xn } be the block maxima

Ø Then
P(XM ≤ x) = P(X1 ≤x, X2 ≤ x, X3 ≤ x, …, Xn ≤ x)
= P(X1 ≤x) P(X2 ≤ x) P(X3 ≤ x)… P( Xn ≤ x), because Xi ’s are independent
= [P(X ≤x) ]n , because Xi ’s are identical
= [F(x) ]n

Generalised Extreme Value (GEV) distribution
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Ø Let 𝛼", 𝛼$	, … , 𝛼', 	𝛽", 𝛽$ ,… , 𝛽'> 0 be suitable sequences of real constants.
Ø We standardise the values of XM and call the following the standardised block maxima:

)*+,-
.-

Ø We can attempt to standardise the values of XM by finding a sequence of constants 𝛼",
𝛼$	, …	,𝛽", 𝛽$ >0 so that the limiting distribution depends only on x:

Ø The Extreme Value Theorem tells us that it is possible to find such values of 𝛼', 𝛽'	for most 
common distributions of X. 

Generalised Extreme Value (GEV) distribution
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Ø More generally, whatever the distribution of the underlying individual claims, as n increases, the 
distribution of the standardised maximum values )*+,-

.-
will converge to a distribution called the 

GEV distribution with CDF:

Ø The CDF of the GEV distribution is:

Ø The GEV distribution has 3 parameters:
1. a location parameter α
2. a scale parameter β > 0
3. a shape parameter γ

Generalised Extreme Value (GEV) distribution
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Ø The parameters α	and β rescale (shift and stretch) the distribution. They are analogous to, but do 
not usually correspond, to the mean and standard deviation.

Ø The parameter γ determines the overall shape of the distribution (analogous to the skewness). 
The sign (positive, negative or zero) results in 3 different shaped distribution: Fréchet-type GEV 
distribution, Weibull-type GEV distribution and Gumbel-type GEV distribution.

Ø Note that the Weibull-type GEV distribution is not the same thing as the Weibull distribution.

Generalised Extreme Value (GEV) distribution
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Ø Fréchet-type GEV distributions: 
suitable for modelling extreme financial (loss) events because 

• there	is	no	upper	bound	to	the	loss	events		
• Fréchet-type	GEV	distributions	have	a	heavier	tail	(i.e.	a	tail	that	decays	more	slowly	to	0)	

than	other	types	of	GEV	distribution.

Ø Weibull-type GEV distributions: 
could fit such a distribution to, for example:

• the	ages	of	a	human	population	(indicating	an	upper	bound	to	possible	age)	or	
• where	a	loss	is	certain	not	to	exceed	a	certain	value	(for	example,	if	such	losses	are	

reinsured).

10

Generalised Extreme Value (GEV) distribution 
Fréchet-type, Weibull-type and Gumbel-type GEV distribution
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Ø If we know the form of the underlying distribution, it is possible to work out the limiting 
distribution of the standardised maximum value. We can then use the appropriate member 
of the GEV family to model the tail of the distribution.

Ø Note the distinction between the underlying distribution (the distribution that applies to the 
full dataset) and the distribution that we are using to model the extreme values (the GEV 
distribution). 

Ø The underlying distribution will determine which of the three different types of GEV 
distribution will arise, as shown in the table below. The three types are distinguished by the 
sign of the shape parameter γ.
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Generalised Extreme Value (GEV) distribution 
Fréchet-type, Weibull-type and Gumbel-type GEV distribution
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Generalised Extreme Value (GEV) distribution 
Fréchet-type, Weibull-type and Gumbel-type GEV distribution
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Generalised Extreme Value (GEV) distribution 
Fréchet-type, Weibull-type and Gumbel-type GEV distribution

As a rough guide:
Ø For underlying distributions that have finite upper limit (eg: uniform dist), the limiting 

distribution of the standardised max value (i.e., the tail) is of the Weibull-type GEV (which 
also has an upper limit).

Ø For underlying distributions that are ‘light tail’ distributions with finite moments of all orders 
(e.g.: exponential, normal, lognormal), the limiting distribution of the standardised max 
value (i.e., the tail) is of the Gumbel-type GEV.

Ø For underlying distributions that are ‘heavy tail’ distributions whose higher moments can be 
infinite, the limiting distribution of the standardised max value (i.e., the tail) is of the 
Fréchet-type GEV.



Ø Let X be a r.v. which follows some underlying distribution. Instead of focusing on the 
maximum values, we consider the distribution of the values of X that exceed a specified 
threshold, for example, all claims exceeding £100,000.

Ø For large samples, the distribution of these extreme values converges to the generalised 
Pareto distribution.

Ø So, we can model the tail of a distribution by choosing a suitably high threshold and then 
fitting a GPD to the observed values in excess of that threshold.

Ø Example: Under excess of loss reinsurance, GPD can be used to model the claim amounts 
above retention limit (i.e., the amounts that will be passed to the reinsurer).

Ø Let X be a r.v. with cumulative distribution function F, then the excess over the threshold u
is:

X - u | X > u

Generalised Pareto Distribution (GPD)
Threshold exceedances
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Choice of u:
Ø Sometimes, the value of the threshold, u, may be specified, e.g., if it is a reinsurance 

retention limit. 
Ø Other times, we may need to make a judgement as to where the threshold should be. 

Usually, we pick the threshold to be say the 90th or 95th percentile of the underlying 
distribution. 

Ø The choice of u also depends on there being a sufficient volume of data available 
above the selected threshold.

Generalised Pareto Distribution (GPD)
Threshold exceedances
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Ø If the maximum possible value of X is xF ≤ ∞, the cumulative distribution function of the 
excess is (for 0 ≤ x < xF - u):

Generalised Pareto Distribution (GPD)
Threshold exceedances
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Ø Example: Suppose we have monthly claim data stored in a data frame data with the first 
column month and the second column claim. 
To calculate the threshold exceedances, xe, for these claims, at the threshold u, we can 
use the following R code:

• x <- data$claim
• xe <- x[x>u] - u

Generalised Pareto Distribution (GPD)
Calculating threshold exceedances using R
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Ø More generally, we find that whatever the underlying distribution of X, the distribution of the 
threshold exceedances will converge to a GPD as the threshold u increases, i.e.

Ø The generalised Pareto distribution is a two-parameter distribution with CDF: 

Ø The GPD distribution has 2 parameters:
• a scale parameter β > 0
• a shape parameter γ

Generalised Pareto Distribution (GPD)
Generalised Pareto distribution
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Generalised Pareto Distribution (GPD)
Generalised Pareto distribution
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Ø Tail weight is a measure of how quickly the (upper) tail of a PDF tends to 0. 
Ø If the PDF of random variable, X1 , tends to 0 as x → ∞ more slowly than the PDF of random 

variable, X2 , then X1 is said to have a heavier tail than X2 .
Ø Depending on the context, an exponential, normal or lognormal distribution may be considered 

to be a suitable baseline to use for comparison.
Ø Let us look at 4 ways of measuring tail weight:

1) The existence of moments
2) Limiting density ratios
3) Hazard rate
4) Mean residual life

Measures of tail weight
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Reminder:
Ø 𝐸 𝑋5 , the kth (non-central) moment of a continuous positive-valued distribution with 

density function f(x) is given below and the integral below must converge (i.e. take a finite 
value) in order for 𝐸 𝑋5 to exist.

𝑬 𝑿𝒌 = 	: 𝒙𝒌	𝒇 𝒙 𝒅𝒙
>

𝟎

Example: For the Gamma(α, 𝜆) distribution with the following pdf

the kth moment exists for all values of k, indicating that it has a relatively light tail. 

The existence of moments
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Ø However, for some distributions, the value of the kth moment doesn’t exist beyond a certain 
value of k (i.e. its value becomes infinite).

Example: For a Pareto(α, 𝜆) distribution with the following pdf

the kth moment only exists for α < 𝜆.
So a Pareto distribution (with a low value of the parameter α) will have a much thicker tail.

The existence of moments
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Ø We can compare the thickness of the tail of two distributions by calculating the relative values 
of their density functions at the far end of the upper tail:

Ø Limiting density ratio = 𝐥𝐢𝐦
𝐱→>

𝐟𝐗𝟏(𝐱)
𝐟𝐗𝟐(𝐱)

Ø Comparing the gamma distribution with the Pareto distribution, the presence of the exponential 
factor in the gamma density results in a limiting density ratio of zero which confirms that the 
gamma distribution has a lighter tail.

Limiting density ratios
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Using the R software:
Ø We can obtain the values of the PDF of two distributions d1 and d2, for say, x values 1 

to 1000 and then calculate the ratio d1/d2.
Ø We can then plot the graph of d1/d2 against x to determine which of d1 and d2 has the 

thicker tail.

Limiting density ratios
Plotting the limiting density ratios using R
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For a distribution with pdf f(x), cdf F(x), 

𝐡𝐚𝐳𝐚𝐫𝐝	𝐫𝐚𝐭𝐞, 𝐡 𝐱 =
𝐟 𝐱

𝟏	 − 𝐅 𝐱

Ø The hazard rate is the rate of failure given survival up until that point.
Ø To interpret the hazard rate, you can think of it as the “force of mortality” at age x.
Ø If the force of mortality increases as a person’s age increases, relatively few people will 

live to old age (corresponding to a light tail). If, on the other hand, the force of mortality 
decreases as the person’s age increases, there is the potential to live to a very old age 
(corresponding to a heavier tail).

Hazard rate
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Ø For the Pareto distribution, we find that the hazard rate is always a decreasing function 
of x, confirming that it has a heavy tail.

Ø For the Pareto distribution, the hazard rate:

Hazard rate
Example: Pareto distribution
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Using the R software:
We can plot the hazard rate for a distribution against x to determine the thickness of its 
tail.

Example: The R code to calculate the hazard rate, H, for a Weibull distribution with 
shape parameter g and scale parameter b = c-1/g   is given by:

H <- dweibull(x,g,b)/(1-pweibull(x,g,b))

We can then plot the graph of H against x to determine the thickness of its tail. 

Hazard rate
Plotting hazard rate using R
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For a distribution with pdf f(x), cdf F(x), mean residual life, e(x) is defined as: 

Ø As with hazard rates, we can interpret this in terms of mortality as the expected future 
lifetime, in other words, the mean residual life gives the expected remaining survival time 
given survival up until this point.

Ø If the expected future lifetime decreases with age, relatively few people will live to old age 
(corresponding to a light tail), but if it increases, there is the potential to live to a very old age 
(corresponding to a heavier tail).

Mean residual life
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For the Pareto distribution, we find that the mean residual life is always an increasing function 
of x, confirming that it has a heavy tail.

The mean residual life for the Pareto distribution with 𝛼 > 1 is:

Mean residual life
Example: Pareto distribution

30



Using the R software:
We can plot the mean residual life against x. 

Example: The R code for the survival function of a Weibull distribution with shape 
parameter g and scale parameter b = c-1/g   is given by:

Sy <- function(y) {(1-pweibull(y,g,b))}

Hence the mean residual life for x is given by ex as follows: 
int <- integrate(Sy,x,Inf)

ex <- int$value/(1-pweibull(x,g,b))

We can then plot the graph of ex against x. 

Mean residual life
Plotting mean residual life using R
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