Exercises

- (1) Let p be a prime and a_1, \ldots, a_n be integers. Show that if $p \mid a_1 \ldots a_n$ then there is a j with $1 \leq j \leq n$ such that $p \mid a_j$.
- (2) Find the remainder $r \in [0, 16]$ so that $2^{2023} \equiv r \mod 17$.
- (3) Let p be a prime and $p \nmid a$. Show that $\{a, 2a, \ldots, (p-1)a\} \mod p$ has cardinality p-1.
- (4) Let GCD(m, n) = 1 and $a \in \mathbb{N}$. Show that if $m \mid a$ and $n \mid a$ then $mn \mid a$.
- (5) Solve the system of congruences

$$x \equiv 1 \mod 2$$
, $x \equiv 4 \mod 5$, $x \equiv -2 \mod 7$.

- (6) Using the following method of contradiction show that there are infinitely many primes $p \equiv -1 \mod 4$: Assume that there are only finitely many such primes p_1, \ldots, p_k . Show that any prime factor p of $N = 4p_1 \ldots p_k 1$ is $\equiv 1 \mod 4$. Using this complete the proof.
- (7) From the definition (and not using the formula) that for any prime p and natural number k we have $\varphi(p^k) = p^k \left(1 \frac{1}{p}\right)$. Here φ is the totient function.
- (8) If there exists $e \ge 0$ so that $z^e \equiv 1 \mod n$ show that GCD(z, n) = 1.
- (9) Show that $\sum_{d|n} \varphi(d) = n$.
- (10) Let z be a primitive root mod p. Show that the order of z^e is $\frac{p-1}{\text{GCD}(e,p-1)}$.
- (11) Find all elements in $\mathbb{Z}/17\mathbb{Z}^{\times}$ with order 4.
- (12) For any $n, k \in \mathbb{N}$ show that $\varphi(n^k) = n^{k-1}\varphi(n)$.
- (13) For any n > 2 show that $\phi(n)$ is even.
- (14) Find $(\frac{39}{41})$ and $(\frac{38}{43})$.
- (15) Find all solutions of $x^2 = -1 \mod 29$.
- (16) Find all solutions of $x^2 = -1 \mod 37$.
- (17) Show that $\sum_{x \in \mathbb{Z}/p\mathbb{Z}} \left(\frac{x}{p}\right) = 0.$
- (18) Show that $\left(\frac{a^2b}{p}\right) = \left(\frac{b}{p}\right)$ for any $a, b \in \mathbb{N}$.
- (19) Recall the convergence $\frac{s_n}{t_n}$ of the continued fraction expansion of a real number. Show that s_n and t_n are increasing sequence.

- $\mathbf{2}$
- (20) Recall the algorithm for continued fraction expansion and the quantities a_n and ρ_n . If $r = [a; a_1, a_2, ...]$ show that $r = [a; a_1, a_2, ..., a_{n-1}, \rho_n]$.
- (21) Show that $[\bar{1}] = \frac{1+\sqrt{5}}{2}$.
- (22) Find the value of $[\overline{2}; 1]$ and $[3; 5, \overline{2, 1}]$.
- (23) Show that $\sqrt{n^2 + 1} = [n; \overline{2n}]$.
- (24) Find continued fraction expansion of $\sqrt{11}$ and find the first three convergents.
- (25) Let r_n be the convergence of an irrational number r. Show that $r_{2j} < r < r_{2j+1}$.
- (26) Show that if a periodic continued fraction has period 0 or 1 then it must be a quadratic algebraic number.
- (27) Let $d \in \mathbb{N}$ such that \sqrt{d} has periodic continued fraction expansion with even period. Show that $x^2 dy^2 = -1$ has no solution.
- (28) Find all solutions to $x^1 17y^2 = \pm 1$ and $x^2 10y^2 = \pm 1$ and $x^2 11y^2 = \pm 1$.
- (29) If $s^2 dt^2 = s'^2 dt'^2 = \pm 1$ for $s, s', t, t' \ge 0$ and $s + t\sqrt{d} < s' + t'\sqrt{d}$ show that s < s' and t < t'.
- (30) Write 13, 17 as sums of two squares.
- (31) Write 65 as sums of two squares in two different ways.
- (32) What are the rings of integers of $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{14})$, $\mathbb{Q}(\sqrt{7}i)$.
- (33) Calculate the unit groups in the rings of integers in $\mathbb{Q}(\sqrt{97}i)$ and $\mathbb{Q}(\sqrt{26})$.
- (34) Let d < 0 and $d \equiv 2, 3 \mod 4$. Find the group of units in $\mathbb{Z}[\sqrt{d}]$.