Exercises

(1) Let p be a prime and a_{1}, \ldots, a_{n} be integers. Show that if $p \mid a_{1} \ldots a_{n}$ then there is a j with $1 \leq j \leq n$ such that $p \mid a_{j}$.
(2) Find the remainder $r \in[0,16]$ so that $2^{2023} \equiv r \bmod 17$.
(3) Let p be a prime and $p \nmid a$. Show that $\{a, 2 a, \ldots,(p-1) a\} \bmod p$ has cardinality $p-1$.
(4) Let $\operatorname{GCD}(m, n)=1$ and $a \in \mathbb{N}$. Show that if $m \mid a$ and $n \mid a$ then $m n \mid a$.
(5) Solve the system of congruences

$$
x \equiv 1 \quad \bmod 2, \quad x \equiv 4 \quad \bmod 5, \quad x \equiv-2 \quad \bmod 7
$$

(6) Using the following method of contradiction show that there are infinitely many primes $p \equiv-1 \bmod 4$: Assume that there are only finitely many such primes p_{1}, \ldots, p_{k}. Show that any prime factor p of $N=4 p_{1} \ldots p_{k}-1$ is $\equiv 1 \bmod 4$. Using this complete the proof.
(7) From the definition (and not using the formula) that for any prime p and natural number k we have $\varphi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right)$. Here φ is the totient function.
(8) If there exists $e \geq 0$ so that $z^{e} \equiv 1 \bmod n$ show that $\operatorname{GCD}(z, n)=1$.
(9) Show that $\sum_{d \mid n} \varphi(d)=n$.
(10) Let z be a primitive root $\bmod p$. Show that the order of z^{e} is $\frac{p-1}{\operatorname{GCD}(e, p-1)}$.
(11) Find all elements in $\mathbb{Z} / 17 \mathbb{Z}^{\times}$with order 4.
(12) For any $n, k \in \mathbb{N}$ show that $\varphi\left(n^{k}\right)=n^{k-1} \varphi(n)$.
(13) For any $n>2$ show that $\phi(n)$ is even.
(14) Find $\left(\frac{39}{41}\right)$ and $\left(\frac{38}{43}\right)$.
(15) Find all solutions of $x^{2}=-1 \bmod 29$.
(16) Find all solutions of $x^{2}=-1 \bmod 37$.
(17) Show that $\sum_{x \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{x}{p}\right)=0$.
(18) Show that $\left(\frac{a^{2} b}{p}\right)=\left(\frac{b}{p}\right)$ for any $a, b \in \mathbb{N}$.
(19) Recall the convergence $\frac{s_{n}}{t_{n}}$ of the continued fraction expansion of a real number. Show that s_{n} and t_{n} are increasing sequence.
(20) Recall the algorithm for continued fraction expansion and the quantities a_{n} and ρ_{n}. If $r=\left[a ; a_{1}, a_{2}, \ldots\right]$ show that $r=\left[a ; a_{1}, a_{2}, \ldots, a_{n-1}, \rho_{n}\right]$.
(21) Show that $[\overline{1}]=\frac{1+\sqrt{5}}{2}$.
(22) Find the value of $[\overline{2 ; 1}]$ and $[3 ; 5, \overline{2,1}]$.
(23) Show that $\sqrt{n^{2}+1}=[n ; \overline{2 n}]$.
(24) Find continued fraction expansion of $\sqrt{11}$ and find the first three convergents.
(25) Let r_{n} be the convergence of an irrational number r. Show that $r_{2 j}<$ $r<r_{2 j+1}$.
(26) Show that if a periodic continued fraction has period 0 or 1 then it must be a quadratic algebraic number.
(27) Let $d \in \mathbb{N}$ such that \sqrt{d} has periodic continued fraction expansion with even period. Show that $x^{2}-d y^{2}=-1$ has no solution.
(28) Find all solutions to $x^{1}-17 y^{2}= \pm 1$ and $x^{2}-10 y^{2}= \pm 1$ and $x^{2}-11 y^{2}=$ ± 1.
(29) If $s^{2}-d t^{2}=s^{\prime 2}-d t^{\prime 2}= \pm 1$ for $s, s^{\prime}, t, t^{\prime} \geq 0$ and $s+t \sqrt{d}<s^{\prime}+t^{\prime} \sqrt{d}$ show that $s<s^{\prime}$ and $t<t^{\prime}$.
(30) Write 13,17 as sums of two squares.
(31) Write 65 as sums of two squares in two different ways.
(32) What are the rings of integers of $\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{14}), \mathbb{Q}(\sqrt{7} i)$.
(33) Calculate the unit groups in the rings of integers in $\mathbb{Q}(\sqrt{97} i)$ and $\mathbb{Q}(\sqrt{26})$.
(34) Let $d<0$ and $d \equiv 2,3 \bmod 4$. Find the group of units in $\mathbb{Z}[\sqrt{d}]$.

